Focal Loss 和二元交叉熵损失(BCE)都是用于二分类或多标签分类任务的损失函数,但它们在解决类别不平衡、难易样本优化等方面有显著差异。以下是两者的详细对比:
1. 核心原理对比
维度 | Focal Loss | 二元交叉熵(BCE) |
---|---|---|
设计目标 | 解决类别不平衡,聚焦难分类样本 | 通用二分类/多标签分类,无特殊优化 |
数学形式 | 在BCE基础上增加调节因子 (1−pt)γ 和 α | 标准交叉熵公式,无额外权重调整 |
适用场景 | 类别极度不平衡(如目标检测中的正负样本) | 类别相对平衡或轻度不平衡 |
关注重点 | 抑制易分类样本的损失贡献,强化难样本学习 | 平等对待所有样本 |