Focal Loss 和二元交叉熵损失(BCE)损失函数对比

Focal Loss 和二元交叉熵损失(BCE)都是用于二分类或多标签分类任务的损失函数,但它们在解决类别不平衡、难易样本优化等方面有显著差异。以下是两者的详细对比:


1. 核心原理对比

维度 Focal Loss 二元交叉熵(BCE)​
设计目标 解决类别不平衡,聚焦难分类样本 通用二分类/多标签分类,无特殊优化
数学形式 在BCE基础上增加调节因子 (1−pt​)γ 和 α 标准交叉熵公式,无额外权重调整
适用场景 类别极度不平衡(如目标检测中的正负样本) 类别相对平衡或轻度不平衡
关注重点 抑制易分类样本的损失贡献,强化难样本学习 平等对待所有样本
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值