门控跳跃(Gated Skip Connection)是深度学习中一种动态控制信息流动的技术,通过可学习的门控信号调整特征传递路径,解决梯度消失、特征冗余等问题。其核心在于选择性融合跨层信息,在提升模型表达能力的同时保持训练稳定性。以下从原理、类型、应用三个维度系统解析:
一、核心原理:动态信息调控
1. 门控机制的本质
- 数学表达:
y=T⋅F(x)+(1−T)⋅x- x:输入特征
- F(x):非线性变换(如卷积层)
- T:门控信号(范围 [0,1]),由 Sigmoid 激活生成。
- 作用:
- T→1:强化当前层特征 F(x);
- T→0:保留原始输入 x(恒等映射)。
2. 门控信号生成
- 通过子网络(如全连接层、1×1 卷积)学习输入相关的权重:
# PyTorch 示例:门控信号生成 gate =