门控跳跃(Gated Skip Connection)的详解

门控跳跃(Gated Skip Connection)是深度学习中一种动态控制信息流动的技术,通过可学习的门控信号调整特征传递路径,解决梯度消失、特征冗余等问题。其核心在于选择性融合跨层信息,在提升模型表达能力的同时保持训练稳定性。以下从原理、类型、应用三个维度系统解析:


一、核心原理:动态信息调控

1. ​门控机制的本质

  • 数学表达​:
    y=T⋅F(x)+(1−T)⋅x
    • x:输入特征
    • F(x):非线性变换(如卷积层)
    • T:门控信号(范围 [0,1]),由 Sigmoid 激活生成。
  • 作用​:
    • T→1:强化当前层特征 F(x);
    • T→0:保留原始输入 x(恒等映射)。

2. ​门控信号生成

  • 通过子网络(如全连接层、1×1 卷积)学习输入相关的权重:
    # PyTorch 示例:门控信号生成
    gate = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值