YOLOv5 的 ​Focus 模块详解

YOLOv5 的 ​Focus 模块是其早期版本(如 v5.0)的核心设计之一,主要用于图像预处理阶段的下采样操作。后续版本(v6.0+)移除了 Focus,改用 ​6×6 卷积层替代。以下是两者的核心区别及代码示例:


 一、Focus 模块的作用与原理

  1. 功能

    • 输入处理​:将输入图像(如 640×640×3)切片为 4 个子图(每隔一个像素采样),拼接后形成 320×320×12 的特征图,再通过卷积(如 3×3)压缩通道至 320×320×32
    • 信息保留​:通过空间信息向通道维度的映射,避免传统下采样(如步长为 2 的卷积)导致的信息丢失,尤其有利于小目标检测。
  2. 计算特点

    • 计算量(FLOPs)​​:单次操作计算量是普通卷积的 4 倍(例如 3×3×12×32×320×320 ≈ 353.8
### YOLOv5 Focus 结构详解 YOLOv5 中的 `Focus` 结构是一种独特的下采样方法,其主要目的是通过重新排列输入图像的空间布局来提取更丰富的特征信息[^1]。相比于传统的池化操作(如最大值池化或平均值池化),`Focus` 不会丢失任何像素信息,而是通过对输入图像进行切片重组的方式完成降维。 #### 实现原理 `Focus` 的核心思想是对输入图像的不同空间位置进行分组,并将其展平成通道维度上的扩展形式。具体来说: - 输入图像被划分为 \(2 \times 2\) 的小块。 - 这些小块会被拼接在一起形成新的高维张量。 - 新的张量具有更高的通道数和更低的空间分辨率。 这种处理方式使得模型能够在不损失原始像素信息的情况下获得更高层次的特征表示。 #### PyTorch 实现代码 以下是 `Focus` 层的具体实现代码: ```python import torch.nn as nn class Focus(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, groups=1, activation=True): super(Focus, self).__init__() self.conv = nn.Conv2d(in_channels * 4, out_channels, kernel_size, stride, padding, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_channels) self.act = nn.LeakyReLU(0.1, inplace=True) if activation else nn.Identity() def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) patch_top_left = x[..., ::2, ::2] patch_bot_left = x[..., 1::2, ::2] patch_top_right = x[..., ::2, 1::2] patch_bot_right = x[..., 1::2, 1::2] x = torch.cat((patch_top_left, patch_bot_left, patch_top_right, patch_bot_right), dim=1) return self.act(self.bn(self.conv(x))) ``` 上述代码中: - `in_channels * 4` 表示将四个子图合并后的通道数量增加四倍。 - 使用 \(1 \times 1\) 卷积对这些新生成的通道进行线性变换,从而控制输出通道的数量。 #### 下采样的作用 与传统池化相比,`Focus` 提供了一种无损的信息压缩机制。它不仅减少了计算开销,还保留了更多细节用于后续检测任务中的目标定位[^4]。 --- ### 总结 在 YOLOv5 架构中,`Focus` 是一种高效的前置模块,能够显著提升轻量化网络的表现力。它的创新之处在于利用简单的切片组合技术实现了既定的目标——即保持较高精度的同时简化整体架构设计。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值