几何变换数据增强是计算机视觉中提升模型泛化能力的核心技术,通过在图像空间上施加几何扰动,模拟真实世界的变化。以下是系统分类与技术解析:
一、核心原理与价值
-
空间不变性学习
通过平移、旋转、缩放等操作,强制模型忽略物体位置、角度、尺度的变化,专注于本质特征。示例:人脸识别中±15°旋转可提升侧脸检测鲁棒性。 -
数据多样性扩展
在有限标注数据下,几何变换可将数据集扩增10-1000倍(如随机裁剪224×224区域使256×256图像扩增32倍)。 -
对抗过拟合
遮挡类变换(如随机擦除)模拟真实遮挡场景,减少模型对局部特征的依赖。
二、核心方法及技术实现
1. 基础几何变换
方法 | 参数范围 | 作用 | 实现示例(PyTorch) |
---|---|---|---|