几何变换数据增强

几何变换数据增强是计算机视觉中提升模型泛化能力的核心技术,通过在图像空间上施加几何扰动,模拟真实世界的变化。以下是系统分类与技术解析:


 一、核心原理与价值

  1. 空间不变性学习
    通过平移、旋转、缩放等操作,强制模型忽略物体位置、角度、尺度的变化,专注于本质特征。示例:人脸识别中±15°旋转可提升侧脸检测鲁棒性

  2. 数据多样性扩展
    在有限标注数据下,几何变换可将数据集扩增10-1000倍(如随机裁剪224×224区域使256×256图像扩增32倍)。

  3. 对抗过拟合
    遮挡类变换(如随机擦除)模拟真实遮挡场景,减少模型对局部特征的依赖。


 二、核心方法及技术实现

1. ​基础几何变换
<
方法 参数范围 作用 实现示例(PyTorch)​
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值