numpy.pad 多维数据 —以填充方式‘minimum’为样例

本文详细介绍了如何使用Numpy的pad函数为三维数组进行填充。通过样例展示了从最内层维度开始,分别进行dim=2、dim=1和dim=0的填充效果,解释了参数含义并提供了实际操作的代码和输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

语法结构

numpy.pad(array, pad_width, mode=‘minimum’, **kwargs)
mode =‘minimum’ 表示最小值填充
具体的参数解释可参考:
Numpy学习——数组填充np.pad()函数的应用
官方文档:pad

样例

方法:
在做padding时,优先从最里面的维度开始扩展,对于本样例的3维数据a,也就是说要先pad dim=2,之后dim=1, 最后是 dim=0.

# 也可以通过画三维图来解释!
import numpy as np
a = np.array([[[1,2],[4,3]],[[5,6],[8,7]]])
print("a.shape:",a.shape) # [2,2,2] 
print(a)
# 在做padding时,优先从最里面的维度开始扩展,对于本样例的三维数据a,也就是先padding dim=2,之后dim=1, 最后是 dim=0
print("padding dim=2:"),
a1 = np.pad(a,((0,0),(0,0),(1,1)),'minimum')
print("a1.shape:",a1.shape,"\na1:\n",a1)

输出:

a.shape: (2, 2, 2)
[[[1 2]
  [4 3]]

 [[5 6]
  [8 7]]]
padding dim=2:
a1.shape: (2, 2, 4) 
a1:
 [[[1 1 2 1]
  [3 4 3 3]]

 [[5 5 6 5]
  [7 8 7 7]]]
print("padding dim=2,dim=1:"),
a2 = np.pad(a,((0,0),(1,1),(1,1)),'minimum')
print("a2.shape:",a2.shape,"\na2:\n",a2)
padding dim=2,dim=1:
a2.shape: (2, 4, 4) 
a2:
 [[[1 1 2 1]
  [1 1 2 1]
  [3 4 3 3]
  [1 1 2 1]]

 [[5 5 6 5]
  [5 5 6 5]
  [7 8 7 7]
  [5 5 6 5]]]
print("padding dim=2,dim=1,dim=0:"),
a3 = np.pad(a,((1,1),(1,1),(1,1)),'minimum')
print("a3.shape:",a3.shape,"\na3:\n",a3)
padding dim=2,dim=1,dim=0:
a3.shape: (4, 4, 4) 
a3:
 [[[1 1 2 1]
  [1 1 2 1]
  [3 4 3 3]
  [1 1 2 1]]

 [[1 1 2 1]
  [1 1 2 1]
  [3 4 3 3]
  [1 1 2 1]]

 [[5 5 6 5]
  [5 5 6 5]
  [7 8 7 7]
  [5 5 6 5]]

 [[1 1 2 1]
  [1 1 2 1]
  [3 4 3 3]
  [1 1 2 1]]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiu_cs

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值