语法结构
numpy.pad(array, pad_width, mode=‘minimum’, **kwargs)
mode =‘minimum’ 表示最小值填充
具体的参数解释可参考:
Numpy学习——数组填充np.pad()函数的应用
官方文档:pad
样例
方法:
在做padding时,优先从最里面的维度开始扩展,对于本样例的3维数据a,也就是说要先pad dim=2,之后dim=1, 最后是 dim=0.
# 也可以通过画三维图来解释!
import numpy as np
a = np.array([[[1,2],[4,3]],[[5,6],[8,7]]])
print("a.shape:",a.shape) # [2,2,2]
print(a)
# 在做padding时,优先从最里面的维度开始扩展,对于本样例的三维数据a,也就是先padding dim=2,之后dim=1, 最后是 dim=0
print("padding dim=2:"),
a1 = np.pad(a,((0,0),(0,0),(1,1)),'minimum')
print("a1.shape:",a1.shape,"\na1:\n",a1)
输出:
a.shape: (2, 2, 2)
[[[1 2]
[4 3]]
[[5 6]
[8 7]]]
padding dim=2:
a1.shape: (2, 2, 4)
a1:
[[[1 1 2 1]
[3 4 3 3]]
[[5 5 6 5]
[7 8 7 7]]]
print("padding dim=2,dim=1:"),
a2 = np.pad(a,((0,0),(1,1),(1,1)),'minimum')
print("a2.shape:",a2.shape,"\na2:\n",a2)
padding dim=2,dim=1:
a2.shape: (2, 4, 4)
a2:
[[[1 1 2 1]
[1 1 2 1]
[3 4 3 3]
[1 1 2 1]]
[[5 5 6 5]
[5 5 6 5]
[7 8 7 7]
[5 5 6 5]]]
print("padding dim=2,dim=1,dim=0:"),
a3 = np.pad(a,((1,1),(1,1),(1,1)),'minimum')
print("a3.shape:",a3.shape,"\na3:\n",a3)
padding dim=2,dim=1,dim=0:
a3.shape: (4, 4, 4)
a3:
[[[1 1 2 1]
[1 1 2 1]
[3 4 3 3]
[1 1 2 1]]
[[1 1 2 1]
[1 1 2 1]
[3 4 3 3]
[1 1 2 1]]
[[5 5 6 5]
[5 5 6 5]
[7 8 7 7]
[5 5 6 5]]
[[1 1 2 1]
[1 1 2 1]
[3 4 3 3]
[1 1 2 1]]]