1015 Reversible Primes (20 point(s))
A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (<105) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line Yes
if N is a reversible prime with radix D, or No
if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
Experiential Summing-up
This question must be clearly read. The definition of reversible prime is a number which is prime and the decimal form of the reverse of the number's corresponding number in specified radix is also a prime.Certainly annoyed.However, only understanding this will you pass all test points.
(The purpose of using English to portray my solution is that to exercise the ability of my expression of English and accommodate PAT advanced level's style.We can make progress together by reading and comprehending it. Please forgive my basic grammar's and word's error. Of course, I would appreciated it if you can point out my grammar's and word's error in comment section.( •̀∀•́ ) Furthermore, Big Lao please don't laugh at me because I just a English beginner settle for CET6 _(:з」∠)_ )
Accepted Code
#include <cstdio>
const int maxn=100010;
bool flag[maxn]={false};
void find_prime()
{
flag[0]=flag[1]=true;
for(int i=2;i<maxn;++i)
{
if(flag[i]==false)
{
for(int j=i+i;j<maxn;j+=i)
{
flag[j]=true;
}
}
}
}
int convert(int x,int d)
{
int product=1,ans=0,z[40],len=0;
do
{
z[len++]=x%d;
x/=d;
}while(x);
for(int i=len-1;i>=0;--i)
{
ans+=z[i]*product;
product*=d;
}
return ans;
}
int main()
{
int n,d;
find_prime();
while(~scanf("%d",&n))
{
if(n<0)
break;
scanf("%d",&d);
int res=convert(n,d);
printf("%s\n",flag[res]==false&&flag[n]==false?"Yes":"No");
}
return 0;
}