【NVCC,CUDA,NVIDIA驱动】装了pytorch,nvcc -V不能用,但能正常使用gpu

文章讲述了在anaconda环境下安装PyTorch后,如何确认GPU支持,解释了NVCC的作用及其版本问题,以及CUDNNLocalInstallerforLinuxx86_64和Ubuntu20.04x86_64的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

我用anaconda装了Pytorch,其能够正常在gpu上运行。
在这里插入图片描述

但是我是用nvcc -V命令时,却报错:-bash: nvcc: command not found
然而,我是可以使用nvidia-smi查看到CUDA的版本号的
在这里插入图片描述
nvidia-smi命令没问题,证明系统能够正确检测到nvidia的显卡驱动,但nvcc -V报错,证明我们的环境里面没有相关的代码。

问题原理

为什么anaconda安装的Pytorch,其能够直接在gpu上运行

经过查阅,发现是conda方式安装的Pytorch自带了cuda,因此不需要我们再独立安装cudacudnn1

CUDA有两个主要的API:runtime(运行时) API和driver API。这两个API都有对应的CUDA版本(如9.2和10.0等)。

1.用于支持driver API的必要文件(如libcuda.so)是由GPU driver installer安装的。nvidia-smi就属于这一类API。
2. 用于支持runtime API的必要文件(如libcudart.so以及nvcc)是由CUDA Toolkit installer安装的。

(CUDA Toolkit Installer有时可能会集成了GPU driver Installer)。nvcc是与CUDA Toolkit一起安装的CUDA compiler-driver tool,它只知道它自身构建时的CUDA runtime版本。它不知道安装了什么版本的GPU driver,甚至不知道是否安装了GPU driver。
综上,如果driver API和runtime> API的CUDA版本不一致可能是因为你使用的是单独的GPU driver installer,而不是CUDA Toolkit installer里的GPU driver installer。

NVCC是什么,怎么查看装没装

nvcc 是The main wrapper for the NVIDIA CUDA Compiler suite. Used to compile and link both host and gpu code.(NVIDIA CUDA 编译器套件的主要包装器,用于编译和链接主机和 gpu 代码)。一般使用nvcc -V查看CUDA版本

下面是如果安装了NVCC,将其添加到环境中的步骤2

  1. 查看cuda的bin目录下是否有nvcc:
<think>我们已知用户的需求是:在Windows11系统下,安装支持GPUPyTorch版本,要求CUDA版本为12.1,Python版本为3.9。根据引用[3]提到的官方PyTorch版本页面(https://pytorch.org/get-started/previous-versions/),我们可以查找对应CUDA12.1的PyTorch版本。注意:在PyTorch官网上,通常最新稳定版本会支持最新的CUDA版本。目前(截至2024年)PyTorch2.x版本已经支持CUDA12.1。步骤:1.确认系统环境:Windows11,已安装CUDA12.1(用户已明确)2.使用conda或pip安装,这里我们给出pip的安装命令,因为conda可能不会及时更新到最新的CUDA版本。根据PyTorch官网,我们可以使用以下命令安装(以PyTorch2.3.0为例,它支持CUDA12.1):```pip3installtorchtorchvisiontorchaudio--index-urlhttps://download.pytorch.org/whl/cu121```但是,我们还需要注意Python版本是3.9,这个版本是兼容的。另外,引用[4]提到可以使用离线下载,但为了方便,我们推荐使用上述在线安装。因此,回答如下:安装步骤:1.确保已安装CUDA12.1(可通过`nvcc--version`命令验证)2.确保已安装Python3.9(可通过`python--version`命令验证)3.创建一个新的虚拟环境(可选,但推荐)4.运行上述pip命令安装PyTorch详细步骤:步骤1:验证CUDA版本打开命令提示符,输入:```bashnvcc--version```如果显示版本为12.1,则继续。步骤2:安装Python3.9如果尚未安装,可以从Python官网下载安装。或者使用Anaconda/Miniconda创建环境:```bashcondacreate-npytorch_gpupython=3.9condaactivatepytorch_gpu```步骤3:安装PyTorch在激活的虚拟环境中,运行:```bashpipinstalltorchtorchvisiontorchaudio--index-urlhttps://download.pytorch.org/whl/cu121```步骤4:验证安装在Python环境中运行:```pythonimporttorchprint(torch.__version__)#应该显示2.x.xprint(torch.cuda.is_available())#应该显示True```注意:如果安装过程中遇到问题,可以尝试使用离线安装(如引用[4]提供的百度网盘链接),但请确保下载的whl文件与CUDA12.1和Python3.9匹配。相关问题:1.如何解决PyTorch安装后`torch.cuda.is_available()`返回False的问题?2.在Windows系统下如何管理多个CUDA版本?3.如何为PyTorch选择正确的torchvision和torchaudio版本?</think>### 安装支持GPUPyTorchCUDA 12.1 + Python 3.9 + Windows 11) #### 安装步骤: 1. **验证CUDA环境** 确保已正确安装CUDA 12.1和匹配的NVIDIA驱动: ```bash nvcc --version # 应显示 release 12.1 nvidia-smi # 驱动版本需≥12.1要求 ``` 2. **创建Python 3.9虚拟环境** 使用Anaconda/Miniconda(建议从[清华镜像](https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/)下载): ```bash conda create -n pytorch_gpu python=3.9 conda activate pytorch_gpu ``` 3. **安装PyTorch GPU版本** 通过官方命令安装[^3]: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 ``` *注:PyTorch 2.0+ 正式支持CUDA 12.1,无需额外配置cuDNN* 4. **验证安装** 运行诊断脚本: ```python import torch print(f"PyTorch版本: {torch.__version__}") # 预期 ≥2.0.0 print(f"CUDA可用: {torch.cuda.is_available()}") # 预期 True print(f"设备数: {torch.cuda.device_count()}") # 预期 ≥1 print(f"设备名: {torch.cuda.get_device_name(0)}") # 显示GPU型号 ``` #### 常见问题解决: - **`torch.cuda.is_available()=False`**: 检查驱动CUDA版本匹配性,更新NVIDIA驱动到最新版 - **DLL加载错误**: 确保环境变量`PATH`包含CUDA路径(如`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin`) - **性能问题**: 安装NVIDIA [CUDA Toolkit 12.1](https://developer.nvidia.com/cuda-12-1-0-download-archive) 完整版(含优化库) > **关键提示**: > 1. 使用PyTorch官方安装命令可自动处理依赖(无需单独安装cuDNN) > 2. 若需离线安装,可在[PyTorch历史版本页](https://pytorch.org/get-started/previous-versions/)下载`.whl`文件[^4] > 3. 确保虚拟环境中无冲突包:`pip uninstall torch` 后再重 #### 环境配置示例: | 组件 | 推荐版本 | 验证命令 | |--------------|---------------|-------------------| | Python | 3.9.x | `python --version`| | PyTorch | ≥2.0.0 | `torch.__version__`| | CUDA Toolkit | 12.1 | `nvcc --version` | | NVIDIA驱动 | ≥535.86 | `nvidia-smi` |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值