第二课 大数据技术之Fink1.13的实战学习-API操作
第一节 执行环境Execution Environment
1.1 DataStream API介绍
Flink 有非常灵活的分层 API 设计,其中的核心层就是 DataStream/DataSet API。由于新版本已经实现了流批一体,DataSet API 将被弃用,官方推荐统一使用 DataStream API 处理流数据和批数据 。
DataStream(数据流)本身是 Flink 中一个用来表示数据集合的类(Class),我们编写的Flink 代码其实就是基于这种数据类型的处理,所以这套核心 API 就以 DataStream 命名。对于批处理和流处理,我们都可以用这同一套 API 来实现。
DataStream 在用法上有些类似于常规的 Java 集合,但又有所不同。我们在代码中往往并不关心集合中具体的数据,而只是用 API 定义出一连串的操作来处理它们;这就叫作数据流的“转换”(transformations)。
一个 Flink 程序,其实就是对 DataStream 的各种转换 。具体来说,代码基本上都由以下几部分构成,如图 5-1 所示:
获取执行环境(execution environment)
读取数据源(source)
定义基于数据的转换操作(transformations)
定义计算结果的输出位置(sink)
触发程序执行(execute)
其中,获取环境和触发执行,都可以认为是针对执行环境的操作。所以我们就从执行环境、数据源(source)、转换操作(transformation)、输出(sink)四大部分 ,对常用的 DataStream API 做基本介绍。
1.2 创建执行环境
Flink 程序可以在各种上下文环境中运行:我们可以在本地 JVM 中执行程序,也可以提交到远程集群上运行。
不同的环境,代码的提交运行的过程会有所不同。这就要求我们在提交作业执行计算时,首先必须获取当前 Flink 的运行环境,从而建立起与 Flink 框架之间的联系。只有获取了环境上下文信息,才能将具体的任务调度到不同的 TaskManager 执行 。
编写 Flink 程序的第一步,就是创建执行环境。我们要获取的执行环境,是StreamExecutionEnvironment
类的对象,这是所有 Flink 程序的基础。在代码中创建执行环境的方式,就是调用这个类的静态方法,具体有以下三种。
第一种getExecutionEnvironment
, 最简单的方式,直接调用 getExecutionEnvironment 方法。它会根据当前运行的上下文直接得到正确的结果:如果程序是独立运行的,就返回一个本地执行环境;如果是创建了 jar包,然后从命令行调用它并提交到集群执行,那么就返回集群的执行环境。也就是说,这个方法会根据当前运行的方式,自行决定该返回什么样的运行环境 。这种“智能”的方式不需要我们额外做判断,用起来简单高效,是最常用的一种创建执行环境的方式。
StreamExecutionEnvironment env = StreamExecutionEnvironment . getExecutionEnvironment ( ) ;
第二种createLocalEnvironment
这个方法返回一个本地执行环境。可以在调用时传入一个参数,指定默认的并行度;如果不传入,则默认并行度就是本地的 CPU 核心数。
StreamExecutionEnvironment localEnv = StreamExecutionEnvironment . createLocalEnvironment ( ) ;
第三种createRemoteEnvironment
这个方法返回集群执行环境。需要在调用时指定 JobManager 的主机名和端口号,并指定要在集群中运行的 Jar 包。在获取到程序执行环境后,我们还可以对执行环境进行灵活的设置。比如可以全局设置程序的并行度、禁用算子链,还可以定义程序的时间语义、配置容错机制。
StreamExecutionEnvironment remoteEnv = StreamExecutionEnvironment
. createRemoteEnvironment ( "host" ,
1234 ,
"path/to/jarFile.jar"
) ;
1.3 执行模式Execution Mode
上面我们获取到的执行环境,是一个 StreamExecutionEnvironment,顾名思义它应该是做流处理的。那对于批处理,又应该怎么获取执行环境呢?
之前的 Flink 版本中 ,批处理的执行环境与流处理类似,是调用类 ExecutionEnvironment 的静态方法,返回它的对象:
ExecutionEnvironment batchEnv = ExecutionEnvironment . getExecutionEnvironment ( ) ;
StreamExecutionEnvironment env = StreamExecutionEnvironment . getExecutionEnvironment ( ) ;
基于 ExecutionEnvironment 读入数据创建的数据集合,就是 DataSet;对应的调用的一整套转换方法,就是 DataSet API。而从 1.12.0 版本起,Flink 实现了 API 上的流批统一。DataStream API 新增了一个重要特性:可以支持不同的“执行模式”(execution mode),通过简单的设置就可以让一段 Flink 程序在流处理和批处理之间切换。这样一来,DataSet API 也就没有存在的必要了。
**流执行模式(STREAMING)**这是 DataStream API 最经典的模式,一般用于需要持续实时处理的无界数据流。默认情况下,程序使用的就是 STREAMING 执行模式。
**批执行模式(BATCH)**专门用于批处理的执行模式, 这种模式下,Flink 处理作业的方式类似于 MapReduce 框架。对于不会持续计算的有界数据,我们用这种模式处理会更方便。
自动模式(AUTOMATIC)在这种模式下 ,将由程序根据输入数据源是否有界,来自动选择执行模式。
BATCH 模式的配置方法由于 Flink 程序默认是 STREAMING 模式,我们这里重点介绍一下 BATCH 模式的配置。主要有两种方式:
bin/flink run -Dexecution.runtime-mode= BATCH ..
通过代码配置(不推荐), 不要在代码中配置,而是使用命令行。这同设置并行度是类似的:在提交作业时指定参数可以更加灵活,同一段应用程序写好之后,既可以用于批处理也可以用于流处理。而在代码中硬编码(hard code)的方式可扩展性比较差,一般都不推荐。
StreamExecutionEnvironment env = StreamExecutionEnvironment . getExecutionEnvironment ( ) ;
env. setRuntimeMode ( RuntimeExecutionMode . BATCH) ;
什么时候选择 BATCH 模式
我们知道,Flink 本身持有的就是流处理的世界观,即使是批量数据,也可以看作“有界流”来进行处理。所以 STREAMING 执行模式对于有界数据和无界数据都是有效的;而 BATCH模式仅能用于有界数据。看起来 BATCH 模式似乎被 STREAMING 模式全覆盖了,那还有必要存在吗?我们能不能所有情况下都用流处理模式呢?当然是可以的,但是这样有时不够高效。
我们可以仔细回忆一下 word count 程序中,批处理和流处理输出的不同:在 STREAMING模式下,每来一条数据,就会输出一次结果(即使输入数据是有界的);而 BATCH 模式下,只有数据全部处理完之后,才会一次性输出结果。最终的结果两者是一致的,但是流处理模式会将更多的中间结果输出。在本来输入有界、只希望通过批处理得到最终的结果的场景下,STREAMING 模式的逐个输出结果就没有必要了。
所以总结起来,一个简单的原则就是:用 BATCH 模式处理批量数据,用 STREAMING模式处理流式数据。因为数据有界的时候,直接输出结果会更加高效;而当数据无界的时候, 我们没得选择,只有 STREAMING 模式才能处理持续的数据流。
在后面的示例代码中,即使是有界的数据源,我们也会统一用 STREAMING 模式处理。这是因为我们的主要目标还是构建实时处理流数据的程序,有界数据源也只是我们用来测试的手段。
1.4 触发程序执行
有了执行环境,我们就可以构建程序的处理流程了:基于环境读取数据源,进而进行各种转换操作,最后输出结果到外部系统。
需要注意的是,写完输出(sink)操作并不代表程序已经结束。因为当 main()方法被调用时,其实只是定义了作业的每个执行操作,然后添加到数据流图中;这时并没有真正处理数据—因为数据可能还没来。Flink 是由事件驱动的,只有等到数据到来,才会触发真正的计算,这也被称为“延迟执行”或“懒执行”(lazy execution)。
所以我们需要显式地调用执行环境的 execute()方法,来触发程序执行。execute()方法将一 直等待作业完成,然后返回一个执行结果(JobExecutionResult)。
env. execute ( ) ;
第二节 源算子Source
2.1 准备工作
要处理数据,先得有数据,所以首要任务就是把数据读进来。Flink 可以从各种来源获取数据,然后构建 DataStream 进行转换处理。一般将数据的输入来源称为数据源(data source),而读取数据的算子就是源算子(source operator)。所以,source就是我们整个处理程序的输入端。
Flink 代码中通用的添加 source 的方式,是调用执行环境的 addSource()方法:
DataStream < String > stream = env. addSource ( . . . ) ;
方法传入一个对象参数,需要实现 SourceFunction 接口;返回 DataStreamSource。这里的DataStreamSource 类继承自 SingleOutputStreamOperator 类,又进一步继承自 DataStream。所以很明显,读取数据的 source 操作是一个算子,得到的是一个数据流DataStream。
传入的参数是一个“源函数”(source function),需要实现SourceFunction 接口。这是何方神圣,又该怎么实现呢?自己去实现它显然不会是一件容易的事。好在** Flink 直接提供了很多预实现的接口,此外还有很多外部连接工具也帮我们实现了对应的 source function**,通常情况下足以应对我们的实际需求。
我们先构建一个实际应用场景。比如网站的访问操作,可以抽象成一个三元组(用户名,用户访问的 urrl,用户访问 url 的时间戳),所以在这里,我们可以创建一个类 Event,将用户行为包装成它的一个对象。Event 包含了以下一些字段,如下所示:
import java. sql. Timestamp ;
public class Event {
public String user;
public String url;
public Long timestamp;
public Event ( ) {
}
public Event ( String user, String url, Long timestamp) {
this . user = user;
this . url = url;
this . timestamp = timestamp;
}
@Override
public String toString ( ) {
return "Event{" +
"user='" + user + '\'' + ", url='" + url + '\'' +
", timestamp=" + new Timestamp ( timestamp) + '}' ;
}
}
这里需要注意,我们定义的 Event,有这样几个特点:
类是公有(public)的
有一个无参的构造方法
所有属性都是公有(public)的
所有属性的类型都是可以序列化的
Flink 会把这样的类作为一种特殊的 POJO 数据类型来对待,方便数据的解析和序列化。另外我们在类中还重写了 toString 方法,主要是为了测试输出显示更清晰。
我们这里自定义的 Event POJO 类会在后面的代码中频繁使用,所以在后面的代码中碰到 Event,把这里的 POJO 类导入就好了。
2.2 常用场景的读取
从文件读取数据
从集合中读取数据
从元素读取数据
从socket文本流中读取
package com. atguigu. chapter05 ;
import org. apache. flink. streaming. api. datastream. DataStreamSource ;
import org. apache. flink. streaming. api. environment. StreamExecutionEnvironment ;
import java. util. ArrayList ;
public class SourceTest {
public static void main ( String [ ] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment . getExecutionEnvironment ( ) ;
env. setParallelism ( 1 ) ;
DataStreamSource < String > stream1 = env. readTextFile ( "input/clicks.txt" ) ;
ArrayList < Integer > nums = new ArrayList < > ( ) ;
nums. add ( 2 ) ;
nums. add ( 5 ) ;
DataStreamSource < Integer > numStream = env. fromCollection ( nums) ;
ArrayList < Event > events = new ArrayList < > ( ) ;
events. add ( new Event ( "Marry" , "./home" , 1000L ) ) ;
events. add ( new Event ( "Bob" , "./cart" , 2000L ) ) ;
DataStreamSource < Event > stream2 = env. fromCollection ( events) ;
DataStreamSource < Event > stream3 = env. fromElements (
new Event ( "Marry" , "./home" , 1000L ) ,
new Event ( "Bob" , "./cart" , 2000L )
) ;
DataStreamSource < String > stream4 = env. socketTextStream ( "hadoop1" , 7777 ) ;
stream1. print ( "1" ) ;
numStream. print ( "nums" ) ;
stream2. print ( "2" ) ;
stream3. print ( "3" ) ;
stream4. print ( "4" ) ;
env. execute ( ) ;
}
}
2.3 Kafka 读取数据
**Kafka 的连接比较复杂,Flink 内部并没有提供预实现的方法。所以我们只能采用通用的 addSource 方式、实现一个 SourceFunction 了。**好在Kafka 与Flink 确实是非常契合,所以Flink 官方提供了连接工具flink-connector-kafka,直接帮我们实现了一个消费者FlinkKafkaConsumer ,它就是用来读取 Kafka 数据的SourceFunction。
所以想要以 Kafka 作为数据源获取数据,我们只需要引入 Kafka 连接器的依赖 。Flink 官方提供的是一个通用的 Kafka 连接器,它会自动跟踪最新版本的 Kafka 客户端。目前最新版本只支持 0.10.0 版本以上的 Kafka,读者使用时可以根据自己安装的 Kafka 版本选定连接器的依赖版本。这里我们需要导入的依赖如下。
<dependency>
<groupId> org.apache.flink</groupId>
<artifactId> flink- connector- kafka_${
scala.binary.version} </artifactId>
<version> ${
flink.version} </version>
</dependency>
创建 FlinkKafkaConsumer 时需要传入三个参数:
第一个参数 topic,定义了从哪些主题中读取数据。可以是一个 topic,也可以是 topic列表,还可以是匹配所有想要读取的 topic 的正则表达式。当从多个 topic 中读取数据时,Kafka 连接器将会处理所有 topic 的分区,将这些分区的数据放到一条流中去。
第二个参数是一个 DeserializationSchema 或者 KeyedDeserializationSchema。Kafka 消息被存储为原始的字节数据,所以需要反序列化成 Java 或者 Scala 对象。上面代码中使用的 SimpleStringSchema,是一个内置的 DeserializationSchema,它只是将字节数组简单地反序列化成字符串。DeserializationSchema 和 KeyedDeserializationSchema 是公共接口,所以我们也可以自定义反序列化逻辑。
第三个参数是一个 Properties 对象,设置了 Kafka 客户端的一些属性。
package com. atguigu. chapter05 ;
import org. apache. flink. api. common. serialization. SimpleStringSchema ;
import org. apache. flink. streaming. api. datastream. DataStreamSource ;
import org. apache. flink. streaming. api. environment. StreamExecutionEnvironment ;
import org. apache. flink. streaming. connectors. kafka. FlinkKafkaConsumer ;
import java. util. Properties ;
public class SourceTest {
public static void main ( String [ ] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment . getExecutionEnvironment ( ) ;
env. setParallelism ( 1 ) ;
Properties properties = new Properties ( ) ;
properties. setProperty ( "bootstrap.servers" , "hadoop102:9092" ) ;
properties. setProperty ( "group.id" , "consumer-group" ) ;
properties. setProperty ( "key.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" ) ;
properties. setProperty ( "value.deserializer" , "org.apache.kafka.common.serialization.StringDeserializer" ) ;
properties. setProperty ( "auto.offset.reset" , "latest" ) ;
DataStreamSource < String > kafaStream = env. addSource ( new FlinkKafkaConsumer < String > ( "clicks" , new SimpleStringSchema ( ) , properties) ) ;
kafaStream. print ( "Kafka" ) ;
env. execute ( ) ;
}
}
启动kafka进行测试
cd /opt/module/kafka_2.11-2.1.0/
./bin/zookeeper-server-start.sh -daemon ./config/zookeeper.properties
./bin/kafka-server-start.sh -daemon ./config/server.properties
./bin/kafka-console-producer.sh --broker-list localhost:9092 --topic clicks
Mary, ./home, 1000
Alice, ./cart, 2000
2.4 自定义 Source
如果遇到特殊情况,我们想要读取的数据源来自某个外部系统,而 flink 既没有预实现的方法、也没有提供连接器,又该怎么办呢?那就只好自定义实现 SourceFunction了 。
接下来我们创建一个自定义的数据源,实现 SourceFunction 接口。主要重写两个关键方法:run()和 cancel()。
run()方法:使用运行时上下文对象(SourceContext)向下游发送数据;
cancel()方法:通过标识位控制退出循环,来达到中断数据源的效果。
新建一个类com.atguigu.chapter05.SourceCustomTest
package com. atguigu. chapter05 ;
import org. apache. flink. streaming. api. datastream. DataStreamSource ;
import org. apache. flink. streaming. api. environment. StreamExecutionEnvironment ;
public class SourceCustomTest {
public static void main ( String [ ] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment . getExecutionEnvironment ( ) ;
env. setParallelism ( 1 ) ;
DataStreamSource < Event > customSteam = env. addSource ( new ClickSource ( ) ) ;
customSteam. print ( ) ;
env. execute ( ) ;
}
}
想要自定义数据源的话,新建类org.apache.flink.streaming.api.functions.source.SourceFunction
package com. atguigu. chapter05 ;
import org. apache. flink. streaming. api. functions. source. SourceFunction ;
import java. util. Calendar ;
import java. util. Random ;
public class ClickSource implements SourceFunction < Event > {
private boolean running = true ;
@Override
public void run ( SourceContext < Event > ctx) throws Exception {
Random random = new Random ( ) ;
String [ ] users = {
"Mary" , "Alice" , "Bob" , "Cary" } ;
String [ ] urls = {
"./home" , "./cart" , "./fav" , "./prod?id=100" , "./prod?id=10" } ;
while ( running) {
String user = users[ random. nextInt ( users. length) ] ;
String url = urls[ random. nextInt ( urls. length) ] ;
Long timestamp = Calendar . getInstance ( ) . getTimeInMillis ( ) ;
ctx. collect ( new Event ( user, url, timestamp) ) ;
Thread . sleep ( 1000L ) ;
}
}
@Override
public void cancel ( ) {
running = false ;
}
}
要注意的是 SourceFunction 接口定义的数据源,并行度只能设置为 1,如果数据源设置为大于 1 的并行度,则会抛出异常。
所以如果我们想要自定义并行的数据源的话,需要使用 ParallelSourceFunction ,示例程序如下
package com. atguigu. chapter05 ;
import org. apache. flink. streaming. api. datastream. DataStreamSource ;
import org. apache. flink. streaming. api. environment. StreamExecutionEnvironment ;
import org. apache. flink. streaming. api. functions. source. ParallelSourceFunction ;
import java. util. Random ;
public class SourceCustomTest {
public static void main ( String [ ] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment . getExecutionEnvironment ( ) ;
env. setParallelism ( 4 ) ;
DataStreamSource < Integer > customSteam = env. addSource ( new ParallelCustomSource ( ) ) . setParallelism ( 2 ) ;
customSteam. print ( ) ;
env. execute ( ) ;
}
public static class ParallelCustomSource
implements ParallelSourceFunction < Integer > {
private boolean running = true ;
private Random random = new Random ( ) ;
@Override
public void run ( SourceContext < Integer > sourceContext) throws Exception {
while ( running) {
sourceContext. collect ( random. nextInt ( ) ) ;
}
}
@Override
public void cancel ( ) {
running = false ;
}
}
}
2.5 Flink 支持的数据类型
为什么会出现“不支持”的数据类型呢?因为 Flink 作为一个分布式处理框架,处理的是以数据对象作为元素的流。如果用水流来类比,那么我们要处理的数据元素就是随着水流漂动的物体。在这条流动的河里,可能漂浮着小木块,也可能行驶着内部错综复杂的大船。要分布式地处理这些数据,就不可避免地要面对数据的网络传输、状态的落盘和故障恢复等问题,这就需要对数据进行序列化和反序列化。小木块是容易序列化的;而大船想要序列化之后传输,就需要将它拆解、清晰地知道其中每一个零件的类型。
为了方便地处理数据,Flink 有自己一整套类型系统。Flink使用类型信息(TypeInformation)来统一表示数据类型。TypeInformation 类是 Flink 中所有类型描述符的基类。它涵盖了类型的一些基本属性,并为每个数据类型生成特定的序列化器、反序列化器和比较器。
Flink 支持的数据类型。简单来说,对于常见的 Java 和 Scala 数据类型,Flink 都是支持的。Flink 在内部,Flink对支持不同的类型进行了划分,这些类型可以在 Types 工具类 中找到:
基本类型,所有 Java 基本类型及其包装类,再加上 Void、String、Date、BigDecimal 和 BigInteger。
数组类型,包括基本类型数组(PRIMITIVE_ARRAY)和对象数组(OBJECT_ARRAY)
复合数据类型
Java 元组类型(TUPLE):这是 Flink 内置的元组类型,是 Java API 的一部分。最多25 个字段,也就是从 Tuple0~Tuple25,不支持空字段
Scala 样例类及 Scala 元组:不支持空字段
行类型(ROW) :可以认为是具有任意个字段的元组,并支持空字段
POJO:Flink 自定义的类似于 Java bean 模式的类
辅助类型 Option、Either、List、Map 等
泛型类型(GENERIC)Flink 支持所有的 Java 类和 Scala 类。不过如果没有按照上面 POJO 类型的要求来定义,就会被 Flink 当作泛型类来处理。Flink 会把泛型类型当作黑盒,无法获取它们内部的属性;它们也不是由 Flink 本身序列化的,而是由 Kryo 序列化的。
在这些类型中,元组类型和 POJO 类型最为灵活,因为它们支持创建复杂类型。而相比之下,POJO 还支持在键(key)的定义中直接使用字段名,这会让我们的代码可读性大大增加。所以,在项目实践中,往往会将流处理程序中的元素类型定为 Flink 的 POJO 类型 。
Flink 对 POJO 类型 的要求如下:
类是公共的(public)和独立的(standalone,也就是说没有非静态的内部类);
类有一个公共的无参构造方法;
类中的所有字段是 public 且非 final 的;或者有一个公共的 getter 和 setter 方法,这些方法需要符合 Java bean 的命名规范。
类型提示(Type Hints)Flink 还具有一个类型提取系统 ,可以分析函数的输入和返回类型,自动获取类型信息,从而获得对应的序列化器和反序列化器。但是,由于 Java 中泛型擦除的存在,在某些特殊情况下(比如 Lambda 表达式中),自动提取的信息是不够精细的 ——只告诉 Flink 当前的元素由“船头、船身、船尾”构成,根本无法重建出“大船”的模样;这时就需要显式地提供类型信息,才能使应用程序正常工作或提高其性能。为了解决这类问题,Java API 提供了专门的“类型提示”(type hints)。
回忆一下之前的 word count 流处理程序,我们在将 String 类型的每个词转换成(word,count)二元组后,就明确地用 returns 指定了返回的类型。因为对于 map 里传入的 Lambda 表达式,系统只能推断出返回的是Tuple2 类型 ,而无法得到 Tuple2<String, Long>。只有显式地告诉系统当前的返回类型,才能正确地解析出完整数据。
. map ( word -> Tuple2 . of ( word, 1L ) ) . returns ( Types . TUPLE ( Types . STRING, Types . LONG) ) ;
这是一种比较简单的场景,二元组的两个元素都是基本数据类型。那如果元组中的一个元素又有泛型 ,该怎么处理呢?
Flink 专门提供了 TypeHint 类,它可以捕获泛型的类型信息,并且一直记录下来,为运行时提供足够的信息 。我们同样可以通过.returns()方法,明确地指定转换之后的 DataStream 里元素的类型。
returns ( new TypeHint < Tuple2 < Integer , SomeType > > ( ) {
} )
第三节 转换算子
3.1 基本转换算子
数据源读入数据之后,我们就可以使用各种转换算子,将一个或多个 DataStream 转换为新的 DataStream。一个 Flink 程序的核心,其实就是所有的转换操作,它们决定了处理的业务逻辑。
我们可以针对一条流进行转换处理,也可以进行分流、合流等多流转换操作,从而组合成复杂的数据流拓扑。我们来介绍一些基本的转换算子
3.1.1 基本转换算子-映射
映射(map)map 是大家非常熟悉的大数据操作算子,主要用于将数据流中的数据进行转换,形成新的数据流 。简单来说,就是一个“一一映射”,消费一个元素就产出一个元素。
我们只需要基于 DataStream 调用 map()方法就可以进行转换处理。方法需要传入的参数是接口 MapFunction 的实现 ;返回值类型还是 DataStream,不过泛型(流中的元素类型)可能改变。
下面的代码用不同的方式,实现了提取 Event 中的 user 字段的功能。
package com. atguigu. chapter05 ;
import org. apache. flink. api. common. functions. MapFunction ;
import org. apache. flink. streaming. api. datastream. DataStreamSource ;
import org. apache. flink. streaming. api. datastream. SingleOutputStreamOperator ;
import org. apache. flink. streaming. api. environment. StreamExecutionEnvironment ;
public class TransformMapTest {
public static void main ( String [ ] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment . getExecutionEnvironment ( ) ;
env. setParallelism ( 1 ) ;
DataStreamSource < Event > stream = env. fromElements (
new Event ( "Mary" , "./home" , 1000L ) ,
new Event ( "Bob" , "./cart" , 2000L )
) ;
SingleOutputStreamOperator < String > result1 = stream. map ( new UserExtractor ( ) ) ;
SingleOutputStreamOperator < String > result2 = stream. map ( new MapFunction < Event ,