分布式搜索引擎03
0.学习目标
1.数据聚合
聚合(aggregations) 可以让我们极其方便的实现对数据的统计、分析、运算。例如:
- 什么品牌的手机最受欢迎?
- 这些手机的平均价格、最高价格、最低价格?
- 这些手机每月的销售情况如何?
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
1.1.聚合的种类
聚合常见的有三类:
-
桶(Bucket)聚合:用来对文档做分组
- TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
- Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
-
度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求max、min、avg、sum等
-
管道(pipeline)聚合:其它聚合的结果为基础做聚合
注意:参加聚合的字段必须是keyword、日期、数值、布尔类型
原因:针对字符串的聚合,不能分词
,分词后有好几个字段,没法分组,所以不能用text类型的数据聚合
1.2.DSL实现聚合
现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。
1.2.1.Bucket聚合语法
语法如下:
GET /hotel/_search
{
"size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果
"aggs": { // 定义聚合,里面可以定义多个聚合
"brandAgg": { //给聚合起个名字
"terms": { // 聚合的类型,按照品牌值聚合,所以选择term
"field": "brand", // 参与聚合的字段
"size": 20 // 希望获取的聚合结果数量
}
}
}
}
结果如图:
1.2.2.聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。
我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"order": {
"_count": "asc" // 按照_count升序排列
},
"size": 20
}
}
}
}
1.2.3.限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。
我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search
{
"query": {
"range": {
"price": {
"lte": 200 // 只对200元以下的文档聚合
}
}
},
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
这次,聚合得到的品牌明显变少了:
1.2.4.Metric聚合语法
上节课,我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。
这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。
语法如下:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
},
"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
"score_stats": { // 聚合名称
"stats": { // 聚合类型,这里stats可以计算min、max、avg等
"field": "score" // 聚合字段,这里是score
}
}
}
}
}
}
这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。
另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:
1.2.5.小结
aggs代表聚合,与query同级,此时query的作用是?
- 限定聚合的的文档范围
聚合必须的三要素:
- 聚合名称
- 聚合类型
- 聚合字段
聚合可配置属性有:
- size:指定聚合结果数量
- order:指定聚合结果排序方式
- field:指定聚合字段
1.3.RestAPI实现聚合
1.3.1.API语法
聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。
聚合条件的语法:
聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:
单元测试:
@Test
void testAggregation() throws IOException {
//1.准备Request
SearchRequest request = new SearchRequest("hotelssss");
//2.准备DSL
//2.1设置size
request.source().size(0);
//2.2聚合
request.source().aggregation(AggregationBuilders
.terms("brandAgg")
.field("brand")
.size(20));
//3.发出请求
SearchResponse response = client.search(request,RequestOptions.DEFAULT);
//4.解析结果
Aggregations aggregations = response.getAggregations();
//4.1根据聚合名称获取聚合结果(因为聚合的类型是Terms类型,所以它的返回类型也是Terms类型)
Terms brandTerms = aggregations.get("brandAgg");
//4.2获取buckets
List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
//4.3遍历
for (Terms.Bucket bucket : buckets) {
//4.4获取key
String key = bucket.getKeyAsString();//是字符串就用字符串,是数字就用数字类型的方法去获取
System.out.println(key);
}
}
1.3.2. 案例测试
1)业务需求
需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:
分析:
目前,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。但是用户搜索条件改变时,搜索结果会跟着变化。
例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。
也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。
如何得知搜索结果中包含哪些品牌?如何得知搜索结果中包含哪些城市?
使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。
返回值类型就是页面要展示的最终结果:
结果是一个Map结构:
- key是字符串,城市、星级、品牌、价格
- value是集合,例如多个城市的名称
2)业务实现-多条件聚合
在cn.itcast.hotel.service.IHotelService
中定义新方法:
Map<String, List<String>> filters();
在cn.itcast.hotel.service.impl.HotelService
中实现该方法:
@Override
public Map<String, List<String>> filters() {
try {
//1.准备Request
SearchRequest request = new SearchRequest("hotelssss");
//2.准备DSL
//2.1设置size
request.source().size(0);
//2.2聚合
buildBasicQuery(request);
//3.发出请求
SearchResponse response = client.search(request,RequestOptions.DEFAULT);
//4.解析结果
Map<String, List<String>> result = new HashMap<>();
Aggregations aggregations = response.getAggregations();
// 4.1.根据品牌名称,获取品牌结果
List<String> brandList = getAggByName(aggregations, "brandAgg");
result.put("品牌",brandList);//放入map
// 4.2.根据城市名称,获取城市结果
List<String> cityList = getAggByName(aggregations, "cityAgg");
result.put("城市", cityList);
// 4.3.根据星级名称,获取星级结果
List<String> starList = getAggByName(aggregations, "starAgg");
result.put("星级", starList);
return result;
} catch (IOException e) {
throw new RuntimeException(e);
}
}
//抽取聚合条件的构建
private void buildBasicQuery(SearchRequest request) {
request.source().aggregation(AggregationBuilders
.terms("brandAgg") //品牌
.field("brand")
.size(100));
request.source().aggregation(AggregationBuilders
.terms("cityAgg") //城市
.field("city")
.size(100)
);
request.source().aggregation(AggregationBuilders
.terms("starAgg") //星级
.field("starName")
.size(100)
);
}
//抽取解析过程的代码,获得聚合的结果
private List<String> getAggByName(Aggregations aggregations,String aggName) {
//根据聚合名称获取聚合结果(因为聚合的类型是Terms类型,所以它的返回类型也是Terms类型)
Terms brandTerms = aggregations.get(aggName);
//获取buckets
List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
//遍历
List<String> brandList = new ArrayList<>();
for (Terms.Bucket bucket : buckets) {
//获取key
String key = bucket.getKeyAsString();//是字符串就用字符串,是数字就用数字类型的方法去获取
brandList.add(key);
}
return brandList;
}
单元测试:
3)业务实现-对接前端接口(带过滤条件的聚合)
点击页面的搜索按钮发现,此时前端会发生2个请求:
-
查询酒店数据
-
查询酒店过滤项:前端页面会向服务端发起请求,查询品牌、城市、星级等字段的聚合结果
可以看到2个请求除了请求路径不同,他们的请求参数一模一样。
问题:那为什么我在查询过滤项的时候也要带过滤条件呢???过滤项查询是通过聚合来实现,聚合一旦加了条件是在限定聚合的范围,那为什么要限定聚合的范围呢,直接对整个索引库聚合不行吗?
- 如果搜索时没有加任何条件 搜索到的是索引库的所有数据,这个时候对索引库的所有数据去做聚合,得到城市和品牌没有问题。
- 如果搜索时带了查询条件 比如虹桥,那我得到的结果一定是跟上海虹桥火车站有关的结果,它对应的城市一定是上海,但是你却对索引库的所有数据去做聚合,你得到的城市一定包含所有城市,这个时候用户就很奇怪了, 我搜的是虹桥明明是上海的怎么还出现北京了呢。
解决:你不应该多索引库的所有数据聚合,用户的条件是虹桥,那么你就应该对虹桥相关的酒店去做聚合,也就是要限定聚合的范围,即加上查询条件,在查询酒店用的什么条件你在聚合时也用的什么样的查询条件,这样就是在酒店结果的基础上做聚合了,这样聚合的结果就更准确了。因此在查询酒店数据和查询酒店过滤项时要用到相同的查询条件。
例如:用户搜索“外滩”,价格在300~600,那聚合必须是在这个搜索条件基础上完成。
因此我们需要:
- 编写controller接口,接收该请求
- 修改IUserService#getFilters()方法,添加RequestParam参数
- 修改getFilters方法的业务,聚合时添加query条件
在cn.itcast.hotel.web
包的HotelController
中添加一个方法,遵循下面的要求:
- 请求方式:
POST
- 请求路径:
/hotel/filters
- 请求参数:
RequestParams
,与搜索文档的参数一致 - 返回值类型:
Map<String, List<String>>
代码:
@PostMapping("filters")
public Map<String, List<String>> getFilters(@RequestBody RequestParams params){
return hotelService.getFilters(params);
}
修改业务层接口:
修改实现类:
@Override
public Map<String, List<String>> filters(RequestParams params) {
try {
//1.准备Request
SearchRequest request = new SearchRequest("hotelssss");
//2.准备DSL
// 2.1.query
buildBasicQuery(params, request);
//2.2设置size
request.source().size(0);
//2.3聚合
buildBasicQuery(request);
//3.发出请求
SearchResponse response = client.search(request,RequestOptions.DEFAULT);
//4.解析结果
Map<String, List<String>> result = new HashMap<>();
Aggregations aggregations = response.getAggregations();
// 4.1.根据品牌名称,获取品牌结果
List<String> brandList = getAggByName(aggregations, "brandAgg");
result.put("brand",brandList);//放入map
// 4.2.根据城市名称,获取城市结果
List<String> cityList = getAggByName(aggregations, "cityAgg");
result.put("city", cityList);
// 4.3.根据星级名称,获取星级结果
List<String> starList = getAggByName(aggregations, "starAgg");
result.put("starName", starList);
return result;
} catch (IOException e) {
throw new RuntimeException(e);
}
}
//抽取封装多个查询条件的代码
private void buildBasicQuery(RequestParams params, SearchRequest request) {
// 1.构建BooleanQuery
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
// 1.1关键字搜索
String key = params.getKey();
// 健壮性判断:如果key为空,代表没有查询条件,则使用matchAllQuery 查询所有
if (key == null || "".equals(key)) {
boolQuery.must(QueryBuilders.matchAllQuery());
} else { //有条件,在做全文检索的单个字段
boolQuery.must(QueryBuilders.matchQuery("all",key));
}
// 1.2城市条件
if (params.getCity() != null && !params.getCity().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
}
// 1.3品牌条件
if (params.getBrand() != null && !params.getBrand().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
}
// 1.4星级条件
if (params.getStarName() != null && !params.getStarName().equals("")) {
boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
}
// 1.5价格
if (params.getMinPrice() != null && params.getMaxPrice() != null) {
boolQuery.filter(QueryBuilders
.rangeQuery("price")
.gte(params.getMinPrice())
.lte(params.getMaxPrice())
);
}
//2.算分控制
FunctionScoreQueryBuilder functionScoreQuery =
QueryBuilders.functionScoreQuery(
// 原始查询,相关性算分的查询
boolQuery,
// function score的数组(因为是内部类,所以需要点的方式创建)
new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
// 其中的一个function score 元素
new FunctionScoreQueryBuilder.FilterFunctionBuilder(
// 过滤条件(布尔类型使用term查询)
QueryBuilders.termQuery("isAD", true),
// 算分函数
ScoreFunctionBuilders.weightFactorFunction(10)
)
});
// 3.放入source
request.source().query(functionScoreQuery);
}
//抽取聚合条件的构建
private void buildBasicQuery(SearchRequest request) {
request.source().aggregation(AggregationBuilders
.terms("brandAgg") //品牌
.field("brand")
.size(100));
request.source().aggregation(AggregationBuilders
.terms("cityAgg") //城市
.field("city")
.size(100)
);
request.source().aggregation(AggregationBuilders
.terms("starAgg") //星级
.field("starName")
.size(100)
);
}
//抽取解析过程的代码,获得聚合的结果
private List<String> getAggByName(Aggregations aggregations,String aggName) {
//根据聚合名称获取聚合结果(因为聚合的类型是Terms类型,所以它的返回类型也是Terms类型)
Terms brandTerms = aggregations.get(aggName);
//获取buckets
List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
//遍历
List<String> brandList = new ArrayList<>();
for (Terms.Bucket bucket : buckets) {
//获取key
String key = bucket.getKeyAsString();//是字符串就用字符串,是数字就用数字类型的方法去获取
brandList.add(key);
}
return brandList;
}
测试:可以看到根据搜索条件动态的显示过滤项
2.自动补全
当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:
这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。
因为需要根据拼音字母来推断,因此要用到拼音分词功能。
2.1.拼音分词器
要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin
课前资料中也提供了拼音分词器的安装包:
安装方式与IK分词器一样,分三步:详细安装步骤可以参考IK分词器的安装过程。
①解压
②上传到虚拟机中,elasticsearch的plugin目录
③重启elasticsearch
④测试
测试用法如下:
POST /_analyze #请求路径
{
"text": "如家酒店还不错", #要分词的内容
"analyzer": "pinyin" #分词器类型:拼音分词器
}
结果:
2.2.自定义分词器
2.2.1 为什么要自定义分词器
默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。
默认的拼音分词器存在的问题:
- 不会分词: “如家酒店还不错” 的全拼首字母放在一块了,说明这句话没有被分词而是作为整体出现了。
- 每个字都分词:“如家酒店还不错” 的每一个字都形成了拼音,这没什么用还不如形成全品呢,比如 rujia。
- 没有汉字只剩拼音:大部分用的还是使用中文搜索而不是拼音搜索,有拼音只是锦上添花但你不能把汉字扔了。
2.2.2 分词器的构成
elasticsearch中分词器(analyzer)的组成包含三部分:
- character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
- tokenizer:真正的分词器,将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart(IK分词器粗粒度的分词)
- tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
文档分词时会依次由这三部分来处理文档:
上图是如何解决拼音分词器不会分词的:
- 先交给ik分词器进行分词,再交给拼音分词器作为过滤处理形成拼音。
2.2.3 自定义分词器语法
我们可以在创建索引库时,通过settings来配置自定义的analyzer(分词器):
说明:由于是在创建索引库的时候指定配置,所以这个配置只对当前索引库有效。
说明:
- 这里只定义了 tokenizer、tokenizer filter,没有定义character filters(对特殊字符处理),因为这里的词条没有包含特殊字符。所以不一定3个都要有,可以是只包含其中的一部分。
- 先经过ik分词器进行分词,在将分好的词交给拼音分词器进一步的处理,这样就解决了拼音分词器不能分词的问题。
PUT /test
{
"settings": { //索引库配置
"analysis": { //分析
"analyzer": { // 自定义分词器
"my_analyzer": { // 分词器名称
"tokenizer": "ik_max_word", //tokenizer:先经过分词器进行分词(ik分词器,细粒度的分词)
"filter": "pinyin" //tokenizer filter:在将分词的词条进一步的处理(使用拼音分词器进一步的分词)
}
}
}
}
}
那么剩下的2个问题(1.它会把分好的词语转化为拼音的时候,是一个字一个字的转化为拼音。2.会把中文去掉)--------解决:对拼音分词器做进一 步的定制(通过可选参数控制拼音分词器的一个效果)。
PUT /test
{
"settings": { //索引库配置
"analysis": { //分析
"analyzer": { // 自定义分词器
"my_analyzer": { // 分词器名称
"tokenizer": "ik_max_word", //tokenizer:先经过分词器进行分词(ik分词器,细粒度的分词)
"filter": "py" //tokenizer filter:在将分词的词条进一步的处理
}
},
"filter": { // 自定义tokenizer filter
"py": { // 过滤器名称
"type": "pinyin", // 过滤器类型,这里是pinyin(拼音分词器)
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
},
//上面分词器定义好了肯定是要用的,那么如何用呢???
//肯定是在定义mapping映射的时候使用(定义索引库字段的时候用)
"mappings": {
"properties": {
"name": {
"type": "text", //字段数据类型
"analyzer": "my_analyzer", //使用自定义的分词器
}
}
}
}
- “type”: “pinyin”:指定使用拼音过滤器进行拼音转换。
- “keep_full_pinyin”: false:表示不保留完整的拼音。如果设置为true,则会将完整的拼音保留下来。
- “keep_joined_full_pinyin”: true:表示保留连接的完整拼音。当设置为true时,如果某个词的拼音有多个音节,那么它们将被连接在一起作为一个完整的拼音。
- “keep_original”: true:表示保留原始词汇。当设置为true时,原始的中文词汇也会保留在分词结果中。
- “limit_first_letter_length”: 16:限制拼音首字母的长度。默认为16,即只保留拼音首字母的前16个字符。
- “remove_duplicated_term”: true:表示移除重复的拼音词汇。如果设置为true,则会移除拼音结果中的重复词汇。
- “none_chinese_pinyin_tokenize”: false:表示是否对非中文文本进行拼音分词处理。当设置为false时,非中文文本将保留原样,不进行拼音分词处理
测试:
//使用自定义的分词器进行分词
//注意:上述的settings配置只对当前索引库有效,所以这里需要指定使用的是哪个索引库
POST /test/_analyze
{
"text": "如家酒店还不错",
"analyzer": "my_analyzer"
}
从上图中可以看出:
1.不光有拼音,还有中文分词.
2.还有中文分词后的英文全拼,以及分词首字母.
2.2.4 面临的问题和解决办法
准备数据:
//插入2条文档
POST /test/_doc/1
{
"id": 1,
"name": "狮子"
}
POST /test/_doc/2
{
"id": 2,
"name": "虱子"
}
//全文检索的单个字段查询
GET /test/_search
{
"query": {
"match": {
"name": "掉入狮子笼咋办"
}
}
}
测试:
-
使用拼音搜索:搜到2个完全正确
-
使用中文汉字搜索:明明搜的是狮子,为什么虱子也能搜索到呢???
原因:拼音分词器适合在创建倒排索引的时候使用,但不能在搜索的时候使用。
- 创建倒排索引时:插入
狮子
文档 按照分词方式会分为狮子、shizi、SZ
,然后创建倒排索引形成文词条和文档编号。插入的是虱子
文档时按词条会分为虱子、shizi、SZ
,除了中文以外剩下的拼音都一样,所以在创建倒排索引时虱子
会形成一个单独的词条,剩下的2个已经存在了它只会记录新的文档id,这样会导致这2个文档的拼音是一样的。 - 搜索时,用户搜索“狮子”:搜索时也用的是拼音分词器,中文
狮子
也被分成了拼音shizi
,这样就搜索出来了是2个文档 - 因此创建倒排索引时使用拼音分词器没有问题,但你在搜索的时候不应该用拼音分词器,搜索的时候用户如果输入的是中文,你就应该使用中文去搜,用户输入的是拼音 你才能拿拼音去搜,所以创建和搜索时我们应该使用不同的分词器。
解决:
因此字段在创建倒排索引时应该用my_analyzer分词器;字段在搜索时应该使用ik_smart分词器;
PUT /test
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "ik_max_word",
"filter": "py"
}
},
"filter": {
"py": {
"type": "pinyin",
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
},
"mappings": {
"properties": {
"name": {
"type": "text",
"analyzer": "my_analyzer", //创建倒排索引使用 my_analyzer 分词器.
"search_analyzer": "ik_smart" //搜索时使用 ik_smart 分词器.
}
}
}
}
测试:把之前的test索引库删除后,在修改创建索引库的语法,之后重新插入数据查询,发现现在正确只显示狮子
。
2.2.5 总结:
如何使用拼音分词器?
-
①下载pinyin分词器
-
②解压并放到elasticsearch的plugin目录
-
③重启即可
如何自定义分词器?
-
①创建索引库时,在settings中配置,可以包含三部分
-
②character filter
-
③tokenizer
-
④filter
拼音分词器注意事项?
- 为了避免搜索到同音字,搜索时不要使用拼音分词器
2.3.自动补全查询
elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:
-
参与补全查询的字段必须是completion类型(专门用来做自动补全查询的)。
-
字段的内容一般是用来补全的多个词条形成的数组。[“Sony”, “WH-1000XM3”]
- 例如第一条数据,如果是一个词条"SonyWH-1000XM3",将来在做自动补全时只能使用s来补全, 用户输入w的时候是不可能补全出产品名称的。如果分为2个词[“Sony”, “WH-1000XM3”],用户输入s时可以补全Sony,用户输入w时可以补全产品名称,更加人性化。
- 即:尽量把词语分成一个个的词条放到数组当中
比如,一个这样的索引库:
// 创建索引库
PUT test
{
"mappings": {
"properties": {
"title":{
"type": "completion"
}
}
}
}
然后插入下面的数据:
// 示例数据
POST test/_doc
{
"title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
"title": ["SK-II", "PITERA"]
}
POST test/_doc
{
"title": ["Nintendo", "switch"]
}
查询的DSL语句如下:
// 自动补全查询
GET /test/_search
{
"suggest": { //自动补全
"title_suggest": { //自动补全的查询名称
"text": "s", // 用户在搜索框中输入的关键字,可以理解为前缀
"completion": {//自动补全的类型(有3种,这里使用的是其中的1种)
"field": "title", //这里的字段名指向的是一个数组(字段必须是 completion 类型),就是要根据数组中的字段进行查询,然后自动补全
"skip_duplicates": true, //如果查询时有重复的词条,是否自动跳过(true 为跳过)
"size": 10 // 获取前10条结果
}
}
}
}
2.4.实现酒店搜索框自动补全
现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建。
另外,我们需要添加一个字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示。
因此,总结一下,我们需要做的事情包括:
-
修改hotel索引库结构,设置自定义拼音分词器
-
修改索引库的name、all字段,使用自定义分词器
-
索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器
-
给HotelDoc类添加suggestion字段,内容包含brand、business
-
重新导入数据到hotel库
2.4.1.修改酒店映射结构
代码如下:
// 酒店数据索引库
PUT /hotel
{
"settings": {
"analysis": {
"analyzer": {
"text_anlyzer": {//做全文检索用的
"tokenizer": "ik_max_word",
"filter": "py"
},
"completion_analyzer": {//做自动补全用的
//keyword:不分词,也就是说它的词条直接作为一个整体,因为我们将来在做自动补全的时候,肯定是固定的一个个的
// 词条,我们会把这些词条放到数组当中,它本身就是一个词条因此没必要再分词了
"tokenizer": "keyword",
"filter": "py"
}
},
"filter": {
"py": {
"type": "pinyin",
"keep_full_pinyin": false,
"keep_joined_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"remove_duplicated_term": true,
"none_chinese_pinyin_tokenize": false
}
}
}
},
"mappings": {
"properties": {
"id":{
"type": "keyword"
},
"name":{
"type": "text",
"analyzer": "text_anlyzer",//创建倒排索引使用 text_anlyze 自定义分词器
"search_analyzer": "ik_smart",//搜索时使用 ik_smart 分词器
"copy_to": "all"
},
"address":{
"type": "keyword",
"index": false
},
"price":{
"type": "integer"
},
"score":{
"type": "integer"
},
"brand":{
"type": "keyword",
"copy_to": "all"
},
"city":{
"type": "keyword"
},
"starName":{
"type": "keyword"
},
"business":{
"type": "keyword",
"copy_to": "all"
},
"location":{
"type": "geo_point"
},
"pic":{
"type": "keyword",
"index": false
},
"all":{
"type": "text",
"analyzer": "text_anlyzer",//创建倒排索引使用 text_anlyze 自定义分词器
"search_analyzer": "ik_smart"//搜索时使用 ik_smart 分词器
},
"suggestion":{//做自动补全的字段
"type": "completion", //做自动补全所需的类型
"analyzer": "completion_analyzer"//使用自定义的分词器completion_analyzer:不分词直接转拼音
}
}
}
}
2.4.2.修改HotelDoc实体
HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。
因此我们在HotelDoc中添加一个suggestion字段,类型为List<String>
,然后将brand、city、business等信息放到里面。
代码如下:
package cn.itcast.hotel.pojo;
import lombok.Data;
import lombok.NoArgsConstructor;
import java.util.Arrays;
import java.util.List;
@Data
@NoArgsConstructor
public class HotelDoc {
private Long id;
private String name;
private String address;
private Integer price;
private Integer score;
private String brand;
private String city;
private String starName;
private String business;
private String location;
private String pic;
// 排序时的 距离值
private Object distance;
//广告标记
private Boolean isAD;
//自动补全
private List<String> suggestion;
public HotelDoc(Hotel hotel) {
this.id = hotel.getId();
this.name = hotel.getName();
this.address = hotel.getAddress();
this.price = hotel.getPrice();
this.score = hotel.getScore();
this.brand = hotel.getBrand();
this.city = hotel.getCity();
this.starName = hotel.getStarName();
this.business = hotel.getBusiness();
this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
this.pic = hotel.getPic();
//组装suggestion
this.suggestion = Arrays.asList(this.brand,this.business);
}
}
2.4.3.重新导入
重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:
问题:像这样中间以/
或者、
分隔的商圈信息,这样将来只能根据第一个词的首字母g来提示,而不能使用w来提示。
解决:应该把商圈数据拆分为2个词条作为数组中的元素,而不是像现在这样拼成一个字符串。
修改HotelDoc 代码:
package cn.itcast.hotel.pojo;
import lombok.Data;
import lombok.NoArgsConstructor;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
@Data
@NoArgsConstructor
public class HotelDoc {
private Long id;
private String name;
private String address;
private Integer price;
private Integer score;
private String brand;
private String city;
private String starName;
private String business;
private String location;
private String pic;
private Object distance;
private Boolean isAD;
private List<String> suggestion;
public HotelDoc(Hotel hotel) {
this.id = hotel.getId();
this.name = hotel.getName();
this.address = hotel.getAddress();
this.price = hotel.getPrice();
this.score = hotel.getScore();
this.brand = hotel.getBrand();
this.city = hotel.getCity();
this.starName = hotel.getStarName();
this.business = hotel.getBusiness();
this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
this.pic = hotel.getPic();
// 组装suggestion
if(this.business.contains("/")){
// business有多个值,需要切割
String[] arr = this.business.split("/");
// 添加元素
this.suggestion = new ArrayList<>();
this.suggestion.add(this.brand);
Collections.addAll(this.suggestion, arr);
}else {
this.suggestion = Arrays.asList(this.brand, this.business);
}
}
}
重新运行批量导入的单元测试方法,再次查询:发现之前的商圈信息分为3个词条了
测试自动补全功能:
2.4.4.自动补全查询的JavaAPI
之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:
而自动补全的结果也比较特殊,解析的代码如下:
单元测试:
@Test
void testSuggest() throws IOException {
//1.准备Request
SearchRequest request = new SearchRequest("hotel");
//2.准备DSL
request.source().suggest(new SuggestBuilder().addSuggestion(
"suggestions",
SuggestBuilders.completionSuggestion("suggestion")
.prefix("h")
.skipDuplicates(true)
.size(10)
));
//3.发起请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析结果
Suggest suggest = response.getSuggest();
//4.1根据补全查询名称,获取补全结果
CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
//4.2获取options
List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
//4.3遍历
for(CompletionSuggestion.Entry.Option Option : options){
String text = Option.getText().toString();
System.out.println(text);
}
}
2.4.5.实现搜索框自动补全
查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:
返回值是补全词条的集合,类型为List<String>
1)在cn.itcast.hotel.web
包下的HotelController
中添加新接口,接收新的请求:
@GetMapping("suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix) {
return hotelService.getSuggestions(prefix);
}
2)在cn.itcast.hotel.service
包下的IhotelService
中添加方法:
List<String> getSuggestions(String prefix);
3)在cn.itcast.hotel.service.impl.HotelService
中实现该方法:
@Override
public List<String> getSuggestions(String prefix) {
try {
// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
request.source().suggest(new SuggestBuilder().addSuggestion(
"suggestions",
SuggestBuilders.completionSuggestion("suggestion")
.prefix(prefix)
.skipDuplicates(true)
.size(10)
));
// 3.发起请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析结果
Suggest suggest = response.getSuggest();
// 4.1.根据补全查询名称,获取补全结果
CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
// 4.2.获取options
List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
// 4.3.遍历
List<String> list = new ArrayList<>(options.size());
for (CompletionSuggestion.Entry.Option option : options) {
String text = option.getText().toString();
list.add(text);
}
return list;
} catch (IOException e) {
throw new RuntimeException(e);
}
}
测试:
3.数据同步
elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步。
3.1.思路分析
常见的数据同步方案有三种:
- 同步调用
- 异步通知
- 监听binlog
3.1.1.同步调用
方案一:同步调用
基本步骤如下:
- hotel-demo对外提供接口,用来修改elasticsearch中的数据
- 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,
说明:
- 场景:假设现在有2个微服务admin、demo,2个服务之间不能互相不能访问对方的数据库,admin只能访问mysql,demo只能访问es
- 步骤:当有人做新增 删除 修改业务时,首先把业务写到数据库里,之后调用对外暴露的更新es的接口,demo服务自己去更新es。
- 由原来的一步(admin服务写入数据库)变为现在的三步(写入数据库、调接口、demo服务更新es),由于是同步调用所以这3个步骤是依次执行。
缺点:
- 数据耦合:原来是写入到数据库中就结束了,现在写入完数据库后还要加上调用demo服务的代码,并且这个调用demo服务的业务跟我们新增的业务没有关系,硬把这两个不相干的业务耦合在一块了,业务耦合必然影响性能。
- 业务耦合必然影响性能:原先写入到数据库就结束了耗时50毫秒,现在还要调用接口(50毫秒)、demo服务还要更新es(50毫秒),一共变为150毫秒性能降低。
- 如果步骤2或步骤3任意一个地方出现了异常,整个服务就出现了问题。
3.1.2.异步通知
方案二:异步通知
流程如下:
- hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
- hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改
说明:
- 步骤:基于之前学习的mq来实现,当有人来做新增时,我先去写数据库写完之后不去调用任何人的接口,而是发一条消息通知以下别人(我这数据新增了),至于谁监听这个消息、 监听之后做什么 、什么时候做都跟步骤一没有关系,这样业务的耦合就解除了。并且步骤2步骤3更新耗时多少秒跟步骤1没有关系,步骤1写完数据库发完消息就结束了,所以性能得到了提升解决了方案一的同步调用问题。
- 缺点:
- 依赖mq的可靠性
- 引入了新的中间件,所以实现起来复杂性有一定的提升。
3.1.3.监听binlog
方案三:监听binlog
流程如下:
- 给mysql开启binlog功能
- mysql完成增、删、改操作都会记录在binlog中
- hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容
说明:
- 通过监听binlog二进制日志文件来实现
- binlog:mysql里面binlog默认是关闭的,一旦开启每当mysql在做crud时,都会将相应的操作记录在binlog当中。
- 也就是说只要数据变化了binlog就会变化,之后在通过canal这样的中间件去监听binlog,一旦返现binlog发生变化立马通知对应的微服务,demo服务知道有数据变更了就可以更新es了。
- 优点:实现方式完全依赖于canal中间件和mysql,跟我们的酒店管理服务没有任何的关系,当有人来新增时酒店服务写数据 写完之后结束,admin服务既不用发消息也不用调任何人,完全的解除了服务之间的耦合。
- 缺点:需要开启mysql的binlog日志,所以mysql的压力增加了,需要引入一个新的中间件,学习的成本和部署的复杂度都变高了。
3.1.4.选择
方式一:同步调用
- 优点:实现简单,粗暴
- 缺点:业务耦合度高
方式二:异步通知
- 优点:低耦合,实现难度一般
- 缺点:依赖mq的可靠性
方式三:监听binlog
- 优点:完全解除服务间耦合
- 缺点:开启binlog增加数据库负担、实现复杂度高
3.2.实现数据同步(异步通知)
3.2.1.思路
说明:
-
数据同步一定是一个服务操作mysql,一个服务操作es,操作es的搜索服务已经写好了,所以还缺少一个操作mysql的这样一个数据管理的服务。
-
利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。
步骤:
-
导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD
-
声明exchange(交换机)、queue(队列)、RoutingKey(路由键:根据一定的规则将消息发送到匹配的队列中)
-
在hotel-admin中的增、删、改业务中完成消息发送
-
在hotel-demo中完成消息监听,并更新elasticsearch中数据
-
启动并测试数据同步功能
3.2.2.导入demo
导入课前资料提供的hotel-admin项目:
运行后,访问 http://localhost:8099
其中包含了酒店的CRUD功能:
3.2.3.声明交换机、队列
问题:需要声明什么样类型的交换机、几个队列、什么样的RoutingKey呢???
- 业务:当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。
- 分析业务可知:消息只要3种(增、删、改),看似有3种类型的消息但是对于es来说,不管是
增
还是改
都是往索引库中插入数据,因为在es中往里面插入数据如果id不存在就是新增,id如果存在就是修改,所以完全可以把增合改合成一个业务,因此这2种业务发生消息可以认为是同一种消息,综上所述消息的类型有2种,一类是增或改的消息、一类是删的消息,因此队列有2种,每个队列对应一个RoutingKey即可。 - 1个交换机:Topic类型为例(通配符,把消息交给符合routing pattern(路由模式) 的队列)
- 2个队列:hotel.insert.queue(增、改),hotel.delete.queue(删)
- 2个RoutingKey:hotel.insert(增、改),hotel.delete(删)
MQ结构如图:
1)引入依赖
在hotel-admin、hotel-demo中引入rabbitmq的依赖:
<!--amqp-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
2)yml添加mq配置
在hotel-admin、hotel-demo中的yml中配置mq:
spring:
rabbitmq:
host: 192.168.10.161 # 主机名
port: 5672 # 端口
virtual-host: / # 虚拟主机
username: itcast # 用户名
password: 123321 # 密码
3)声明队列交换机名称
在hotel-admin和hotel-demo中的cn.itcast.hotel.constatnts
包下新建一个类MqConstants
:
package cn.itcast.hotel.constatnts;
public class MqConstants {
/**
* 交换机
*/
public final static String HOTEL_EXCHANGE = "hotel.topic";
/**
* 监听新增和修改的队列
*/
public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";
/**
* 监听删除的队列
*/
public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";
/**
* 新增或修改的RoutingKey
*/
public final static String HOTEL_INSERT_KEY = "hotel.insert";
/**
* 删除的RoutingKey
*/
public final static String HOTEL_DELETE_KEY = "hotel.delete";
}
4)声明队列交换机
说明:队列和交换机一般声明在消费者中。
在hotel-demo中,定义配置类,声明队列、交换机:
package cn.itcast.hotel.config;
import cn.itcast.hotel.constants.MqConstants;
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.core.TopicExchange;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class MqConfig {
//声明Topic类型的交换机
@Bean
public TopicExchange topicExchange(){
//交换机的名称、持久化、自动删除
return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);
}
//定义新增的队列
@Bean
public Queue insertQueue(){
//队列名字、持久化
return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);
}
//定义删除的队列
@Bean
public Queue deleteQueue(){
//队列名字、持久化
return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);
}
//绑定新增队列和交换机
@Bean
public Binding insertQueueBinding(){
//队列、交换机、RoutingKey
return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);
}
//绑定删除队列和交换机
@Bean
public Binding deleteQueueBinding(){
//队列、交换机、RoutingKey
return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);
}
}
3.2.4.发送MQ消息
在hotel-admin中的增、删、改业务中分别发送MQ消息:
为了简单起见这里业务写到了控制层。
@RestController
@RequestMapping("hotel")
public class HotelController {
@Autowired
private IHotelService hotelService;
@Autowired
private RabbitTemplate rabbitTemplate;
//新增
@PostMapping
public void saveHotel(@RequestBody Hotel hotel){
hotelService.save(hotel);
/*
* 发送消息: 告诉hotel-demo有数据发生新增了
* 交换机名称
* RoutingKey
* 消息内容:新增一个数据是不是直接把这个新增的对象发送过去???
* 答:最好不要这样,因为你发送的消息将来要在mq中保存的,mq是基于内存的,如果把整个对象
* 发过去比较消耗内存,很容易把队列占满,所以建议发送消息时消息体建议小一点。
* 解决:只发送酒店的id,id发送过去demo服务可以通过酒店的id查询到酒店数据。
* */
rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE,MqConstants.HOTEL_INSERT_KEY, hotel.getId());
}
//修改
@PutMapping()
public void updateById(@RequestBody Hotel hotel){
if (hotel.getId() == null) {
throw new InvalidParameterException("id不能为空");
}
hotelService.updateById(hotel);
//修改和新增一样
rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE,MqConstants.HOTEL_INSERT_KEY, hotel.getId());
}
//删除
@DeleteMapping("/{id}")
public void deleteById(@PathVariable("id") Long id) {
hotelService.removeById(id);
//id是直接传过来了
rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE,MqConstants.HOTEL_DELETE_KEY, id);
}
}
3.2.5.接收MQ消息
hotel-demo接收到MQ消息要做的事情包括:
- 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
- 删除消息:根据传递的hotel的id删除索引库中的一条数据
1)首先在hotel-demo的cn.itcast.hotel.service
包下的IHotelService
中新增新增、删除业务
void insertById(Long id);
void deleteById(Long id);
2)给hotel-demo中的cn.itcast.hotel.service.impl
包下的HotelService中实现业务:
//新增
@Override
public void insertById(Long id) {
try {
// 0.根据id查询酒店数据
// HotelService类继承了ServiceImpl<HotelMapper, Hotel>类,并且通过继承来获得了getById(id)方法的实现。
Hotel hotel = getById(id);
// 转换为文档类型
HotelDoc hotelDoc = new HotelDoc(hotel);
// 1.准备Request对象
IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());
// 2.准备Json文档
request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);
// 3.发送请求
client.index(request, RequestOptions.DEFAULT);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
//删除
@Override
public void deleteById(Long id) {
try {
// 1.准备Request
DeleteRequest request = new DeleteRequest("hotel", id.toString());
// 2.发送请求
client.delete(request, RequestOptions.DEFAULT);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
3)编写监听器
在hotel-demo中的cn.itcast.hotel.mq
包新增一个类:
package cn.itcast.hotel.mq;
import cn.itcast.hotel.constants.MqConstants;
import cn.itcast.hotel.service.IHotelService;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
@Component 这个类需要让spring知道
public class HotelListener {
@Autowired
private IHotelService hotelService;
/**
* 消费者1:
* 监听酒店新增或修改的业务
* @param id 酒店id
*/
@RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE) //需要知道监听到那个队列
public void listenHotelInsertOrUpdate(Long id){ //用什么类型传递的就用什么类型接收,spring会自动接收到消息
hotelService.insertById(id);
}
/**
* 消费者2:
* 监听酒店删除的业务
* @param id 酒店id
*/
@RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE) //需要知道监听到那个队列
public void listenHotelDelete(Long id){ //用什么类型传递的就用什么类型接收,spring会自动接收到消息
hotelService.deleteById(id);
}
}
3.2.6.测试
先启动消费者 ,在启动生产者
查看队列:创建成功
查看交换机:创建成功
查看绑定关系:
测试修改:
- 原来的数据:
- 修改后的数据
测试删除:
-
删除前
-
删除后
4.集群
单机的elasticsearch做数据存储,必然面临两个问题:
- 海量数据存储问题:单机存储的数据能力是有限的
- 单点故障问题:数据存在一台机器上,如果这台机器挂了就会导致数据丢失了。
- 解决:集群。
具体方案:
- 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
- es基于内存存储,一台机器上的内存是有限的,把数据拆分到多个机器上存储,这样机器越多存储能力越大。
- 单点故障问题:将分片数据在不同节点备份(replica )
-
注意:将每一个分片的数据拷贝一份做个备份,如果这个备份的数据还是放在相同的分片上,比如:shard0和shard1都放在node1节点上,node1挂了这2个shard0和shard1数据还是都丢失了,数据整体就不完整了。
-
解决:分片数据做备份后放到不同的节点上,也就是说一个节点的主分片和副分片绝对不能放到同一个节点上,这个时候即使node1节点挂了,node2+node3依然是完整数据,一定程度上可以解决单点故障。
-
ES集群相关概念:
-
集群(cluster):一组拥有共同的 cluster name 的 节点。
-
节点(node) :集群中的一个 Elasticearch 实例
-
分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中
解决问题:数据量太大,单点存储量有限的问题。
此处,我们把数据分成3片:shard0、shard1、shard2
-
主分片(Primary shard):相对于副本分片的定义。
-
副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。
数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!
为了在高可用和成本间寻求平衡,我们可以这样做:
- 首先对数据分片,存储到不同节点
- 然后对每个分片进行备份,放到对方节点,完成互相备份
这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:
现在,每个分片都有1个备份,存储在3个节点:
- node0:保存了分片0和1
- node1:保存了分片0和2
- node2:保存了分片1和2
4.1.搭建ES集群
说明:计划搭建由3台机器形成的集群,我们并没有3台电脑所以使用docker容器来模拟节点,因为docker容器之间相互隔离,用它来模拟机器是没有任何问题的。
参考课前资料:https://blog.csdn.net/aa35434/article/details/138261790
其中的第四章节:
4.2.集群脑裂问题
4.2.1.集群职责划分
elasticsearch中集群节点有不同的职责划分:
候选节点、数据节点、预处理节点、协调节点
默认情况下,集群中的任何一个节点都同时具备上述四种角色。
但是真实的集群一定要将集群职责分离:
- master节点:对CPU要求高,但是内存要求第
- data节点:对CPU和内存要求都高
- coordinating节点:对网络带宽、CPU要求高
职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。
一个典型的es集群职责划分如图:
4.2.2.脑裂问题
脑裂是因为集群中的节点失联导致的。
例如一个集群中,主节点与其它节点失联:
此时,node2和node3认为node1宕机,就会重新选主:
当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。
当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:
解决脑裂的方案是,要求选票超过 ( eligible候选节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题。
例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。
4.2.3.小结
master eligible节点的作用是什么?
- 参与集群选主
- 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求
data节点的作用是什么?
- 数据的CRUD
coordinator节点的作用是什么?
-
路由请求到其它节点
-
合并查询到的结果,返回给用户
4.3.集群分布式存储
当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node(协调节点)如何确定数据该存储到哪个分片呢?
协调节点:做请求路由,当一个crud的请求到达协调节点时,它会把请求路由到数据节点完成对应的业务操作。
4.3.1.分片存储测试
因为没有启动kibana,所以只能通过一个redtful的工具来做数据的crud。
插入三条数据:都是在9200这个es01节点上插入的,其它节点没有插入
测试可以看到,三条数据分别在不同分片:
结果每个节点上都能查到这3条数据,这些数据到底是存在那个分片上呢???
可以通过explain命令查看查询结果到底是在哪里
结果:刚好每个分片上都插入了一条数据
我明明是在9200(es01节点)上插入的,为什么每个节点上都有呢,说明我们的协调节点确实是工作了,那么它是怎么工作的???
具体查看4.3.2分片存储原理
4.3.2.分片存储原理
当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node(协调节点)如何确定数据该存储到哪个分片呢?
elasticsearch会通过hash算法来计算文档应该存储到哪个分片:
分片 = hash(文档的id) %(取余) 分片的数量
说明:
- _routing默认是文档的id
- 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!
- hash运算算完是一个数字,那这个数字对分片的数量去取余,例如我们这个集群分片的数量是3,数字对3取余结果只会为0、1、2,因此只要这个_routing值发生变化算出来的这个分片值也在变化,是不是就把数据均衡的分散到了不同分片去了。
- 因为这个算法跟分片的数量有关,将来做查询也是通过这种算法方式知道你在哪个分片,在那个分片上找到对应的文档,如果在这个过程中有人把分片数量改了,比如原来是3个分片现在改为4个了,此时我插入的是3个分片查询的时候变为4个分片,使用相同的算法就不能算出相同的结果了,所以这个索引库一旦创建,分片数量不能修改,一改就找不到了。
新增文档的流程如下:
解读:
- 1)新增一个id=1的文档
- 2)对id做hash运算,假如得到的是2,则应该存储到shard-2
- 3)shard-2的主分片在node3节点,将数据路由到node3
- 4)保存文档
- 5)同步给shard-2的副本replica-2,在node2节点
- 6)返回结果给coordinating-node节点
总结:凡是根据id操作都是以上流程,但是刚刚演示的时候没有id是通过match_all查询的,当我们发起请求的那一刻不知道数据在那个分片上,这个时候协调节点又是怎么工作的呢???
查看4.4.
4.4.集群分布式查询
elasticsearch的查询分成两个阶段:
-
scatter phase:分散阶段,coordinating node会把请求分发到每一个分片
- 因为不知道id所以没办法确定数据在那个分片上,不知道在哪只能是去每个分片上去查。
- 每个分片上都去查,这样可以保证查到的数据是完整的。
-
gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户
- 每个分片查到的结果会返回给协调节点,这个协调节点呢他会去汇总他们查到的结果,然后把它处理完返回给用户。
总结:
- 这个协调节点画了个虚线框:说明它可以是这3个节点中的任意一个,也可以单独再用一个协调节点。
- 无论是访问node1还是node2、node3,那么他们都会把这个请求分发给每一个分片,它们查完把结果汇总然后返回给用户,因此就出现刚才测试的效果了,你去访问任何4个机器的时候发现都能查得到。
4.5.集群故障转移
集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。
1)例如一个集群结构如图:
现在,node1是主节点,其它两个节点是从节点。
2)突然,node1发生了故障:
P:主分片,R:副分片
P1对应R1,P2对应R3,P3对应R3
宕机后的第一件事,需要重新选主,例如选中了node2:
node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点(节点2和3上,P1没有对应R1,P0没有对应的R0)。因此需要将node1上的数据迁移到node2、node3:
测试:
-
目前3个节点是健康的,02是主节点,把主节点停掉(
docker-compose stop es02
)
-
集群变黄不健康了,选举es01为主节点
-
等待了一会时间后,会自动进行故障迁移,把故障节点的数据迁移到这2个正常节点上了,这样数据整体有完整了,集群变为绿色。
-
再次查询数据没有丢失
-
在重启es02节点启动(
docker-compose start es02
),因为有主节点了02现在是副节点,主节点又把分片给迁移回去了,确保每个节点上都会有数据。