NumPy常用的统计函数(求百分位数,求中位数)

前言

这节我们学的是数据分析中numpy中两个函数百分位数percentile()和中位数median()

首先,我们要理解什么是百分位数,什么是中位数

1.percentile()百分位数

理解:百分位数就是在百分之几位置的数组的值

     例如:

  1.  数组[1,2,3],在50%位置上就是2
  2.  数组[1,2,3,4],在50%位置上就是2与3的中间值,就是2.5

代码格式:

percentile(a,q[,axis]) 

 a:数组或可以转化成数组的对象

q:[0,100]范围的浮点数

axis:指定沿着某个轴来计算百分位数,axis=0 表示案列,axis=1 表示按行,默认值 None

代码示例:

import numpy as np

arr=np.arange(12).reshape(3,4)
print(arr)
#[[ 0  1  2  3]
#[ 4  5  6  7]
#[ 8  9 10 11]]
#使用percentile求百分位数
a=np.percentile(arr,50)
#求arr数组垂直方向的百分位数
b=np.percentile(arr,50,axis=0)
#求arr数组横向方向的百分位数
c=np.percentile(arr,50,axis=1)
print(a,b,c)    #5.5 [4. 5. 6. 7.] [1.5 5.5 9.5]
2.median()中位数

理解:中位数就是在中间位置上的数意思跟 percentile函数中数组[1,2,3,...],在50%位置一个意思

 代码格式:

numpy.median(a[,axis])

代码示例:

import numpy as np

arr=np.arange(12).reshape(3,4)
print(arr)
#[[ 0  1  2  3]
# [ 4  5  6  7]
# [ 8  9 10 11]]
d=np.median(arr)
e=np.median(arr,axis=0)
f=np.median(arr,axis=1)
print(d,e,f)    #5.5 [4. 5. 6. 7.] [1.5 5.5 9.5]

 这篇文章就到这里了,我会持续更新,多谢大家的点赞关注支持,谢谢大家!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值