基于深度学习的图像匹配技术专题- [patch based matching5]-手把手教你实现MatchNet(Metric network)

本文详细介绍了如何实现MatchNet的Metric Network部分,包括将全连接层整合到整体网络中,并探讨了由于原始数据集格式问题而需要自定义数据集的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一篇博文中,我们一起实现了MatchNet 的feature 部分,然后双塔顶端,分别是两层 全连接层,现在我们就按照 match net的结构,把分离的全连接 变成整体- metric network.

输入的数据是 ip1和ip1_p,我们需要把数据。

layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {
    name: "ip1_w"
    lr_mult: 1
  }
  param {
    name: "ip1_b"
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

layer { 
name: "ip1_p" 
type: "InnerProduct" 
bottom: "pool2_p" 
top: "ip1_p" 
param { name: "ip1_w" lr_mult: 1 } 
param { name: "ip1_b" lr_mult: 2 } 
inner_product_param { 
num_output: 500 weight_
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值