图像语意分割系列【2】---条件随机场

本文探讨图像语义分割中的条件随机场(CRF),重点在于理解CRF如何优化深度学习模型如FCN的预测结果。通过无向图模型马尔科夫随机场的理论,阐述了条件概率分布P(Y|X)的概念,并举例说明了相邻像素的概率影响,以优化边缘判断,从而提高分割准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第二篇文章,我们不介绍 反卷积结构,而是介绍CRF, 主要是因为,网络结构上,大家只要有相关的CNNs知识,是很好理解的,主要难于作者的创造性思想。这也是FCN能引用1500+的主要原因吧。

这里从数学入手,来看DeepLab如何对FCN进行优化。

有向图模型(Directed Graphical Models,DGM),又称作贝叶斯网络(Bayesian Network),典型模型有:隐马尔科夫模型(生成式),最大熵马尔科夫模型(判别式)
无向图模型(Undirected Graphical Models,UGM),又称做马尔科夫网络(Markov Network)或马尔科夫随机场(Markov Random Field,MRF)

X=(x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值