目录
图像、3D模型、场景快速参数化为神经网络MLP:Instant-NGP复现详解
本文所涉及所有资源均在 传知代码平台可获取。
图像、3D模型、场景快速参数化为神经网络MLP:Instant-NGP复现详解
一、概述
NGP(Neural Graphics Primitives)是一种基于神经网络的图形基元,使用全连接的神经网络进行参数化,其训练和评估成本可能很高。
作者提出了一种多分辨率哈希编码方法,该编码具有自适应性和高效性的特点,可用于改善神经网络输入以提高近似质量和训练速度。多分辨率结构允许网络消除哈希冲突的歧义,从而形成一个简单的架构,可以在现代 GPU 上并行化。
作者将多分辨率哈希编码应用到全融合的CUDA内核,使得NGP得以利用其并行性,从而减小带宽和计算上的浪费。最终能够在几秒钟内训练得到高质量的NGP,并在数十毫秒内以