『ML笔记』PCA(Principal Component Analysis)降维全面解读+python实现!

PCA(Principal Component Analysis)降维全面解读+python实现!

一、数据降维

1.1、维度诅咒问题

许多机器学习问题涉及训练实例的几千甚至上百万个特征,这不仅导致训练非常的缓慢,也让我们很难找到好的解决方案。这个问题通常称为维度诅咒!幸运的是,对现实世界的问题,我们一般可以大量减少特征的数量,将棘手的问题转化为容易解决的问题。例如,MNIST图像:图像边框的像素位上几乎全都是白色,所以我们完全可以在训练集中抛弃这些像素位,也不会丢失太多的信息。
数据降维确实会丢失一些信息(就好比图像压缩为JPEG会降低其质量一样),所以,它虽然能够加速训练,但是也会轻微降低系统的性能。同时它也会让流水线更为复杂,维护难度上升。所以,如果训练太慢,你首先尝试的还是继续使用原始的数据,然后在考虑数据降维。不过在某些情况下,降低训练数据的维度可能会过滤掉一些不必要的噪声和细节,从而导致性能更好(但是通常不会,它只会加速训练)。
除了加速训练,降维对于数据可视化也是非常有用的。降维度降低到两个(或三个),就可以在图形上绘制出高维训练集,通过视觉来检测模式,常常可以获得一些十分重要的洞察,比如说聚类。

1.2、为什么要进行数据降维?

众所周知,数据在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型前沿研究

感谢您的打赏,我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值