第一章节:完全图解RNN、RNN变体、Seq2Seq、Attention机制

本文主要是利用图片的形式,详细地介绍了经典的RNN、RNN几个重要变体,以及Seq2Seq模型、Attention机制。

一、从单层网络谈起

在学习RNN之前,首先要了解一下最基本的单层网络,它的结构如图:

输入是x,经过变换Wx+b和激活函数f得到输出y。相信大家对这个已经非常熟悉了。

二、经典的RNN结构(N vs N)

在实际应用中,我们还会遇到很多序列形的数据: 

如:

  • 自然语言处理问题。x1可以看做是第一个单词,x2可以看做是第二个单词,依次类推。
  • 语音处理。此时,x1、x2、x3……是每帧的声音信号。
  • 时间序列问题。例如每天的股票价格等等

序列形的数据就不太好用原始的神经网络处理了。为了建模序列问题,RNN引入了隐状态h(hidden state)的概念,h可以对序列形的数据提取特征,接着再转换为输出。先从h1的计算开始看: 

图示中记号的含义是:

  • 圆圈或方块表示的是向量
  • 一个箭头就表示对该向量做一次变换。如上图中h0和x1分别有一个箭头连接,就表示对h0和x1各做了一次变换。

在很多论文中也会出现类似的记号,初学的时候很容易搞乱,但只要把握住以上两点,就可以比较轻松地理解图示背后的含义。

h2的计算和h1类似。要注意的是,在计算时,每一步使用的参数U、W、b都是一样的,也就是说每个步骤的参数都是共享的,这是RNN的重要特点,一定要牢记。

依次计算剩下来的(使用相同的参数U、W、b): 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值