swin transformer之相对位置偏置

本文针对SwinTransformer中的相对位置偏置问题进行详细解析,通过参考几篇优秀的博客内容,帮助读者深入理解SwinTransformer相对位置编码的实现原理及其应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### Swin Transformer相对位置编码的实现与作用 #### 实现细节 在 Swin Transformer 的设计中,相对位置编码通过特定的方式被引入到注意力机制之中。具体来说,在计算查询(Query)和键(Key)之间的相似度矩阵 \( Q \cdot K^\top \) 后再加入相对位置信息[^2]。 为了使相对位置坐标能够适配预定义的位置偏置表(table),需要将二维相对坐标 (i, j) 映射成一维索引形式以便于查找对应的偏移量值。这一过程可以通过如下代码片段来完成: ```python relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = relative_coords.sum(-1) ``` 上述操作确保了窗口内任意两点间的相对距离可以唯一地映射至预先构建好的相对位置偏差表格中的某个条目,从而实现了高效的位置嵌入检索[^4]。 #### 编码的作用 这种特殊的相对位置编码方式有助于模型更好地捕捉图像特征的空间关系。相比于自然语言处理领域常见的绝对位置编码方法,Swin Transformer 所采用的方法能够在保持局部感受野的同时增强全局上下文理解能力。这是因为每个 attention block 只关注其所在的小窗口内的像素间的关系,并且这些小窗口会沿着整个图片滑动,使得最终输出包含了丰富的多尺度空间结构信息[^3]。 此外,由于只在同一层内部的不同 patch 或者跨层次之间共享相同的相对位置参数,这不仅减少了内存占用还促进了更有效的训练收敛[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰虺

万水千山总是情,给点打赏行不行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值