深度学习学习率调整的六种方法

本文介绍了六种PyTorch内置的学习率调整方法,包括StepLR、MultiStepLR、ExponentialLR、CosineAnnealingLR、ReduceLROnPlateau和LambdaLR,这些方法能够帮助训练过程更高效地收敛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、lr_scheduler.StepLR

作用:等间隔调整学习率

2、lr_scheduler.MultiStepLR

作用:按设定的间隔调整学习率。这个方法适合后期调试使用,观察loss曲线,为每个实验定制学习率调整时机。

3、lr_scheduler.ExponentialLR

作用:按照指数格式对学习率进行调整

4、lr_scheduler.CosineAnnealingLR

作用:以余弦的形式对学习率进行调整

5、lr_scheduler.ReduceLROnPlateau

作用:当某指标不再变化(下降或升高),调整学习率,这是非常实用的学习率调整策略。例如,当验证集的loss不再下降时,进行学习率调整;或者监测验证集的accuracy,当accuracy不再上升时,则调整学习率。

6、lr_scheduler.LambdaLR

作用:为不同参数组设定不同学习率调整策略。调整规则为,lr = base_lr * lmbda(self.last_epoch) 。

本文参考的是PyTorch 学习笔记(八):PyTorch的六个学习率调整方法 - 知乎

特此记录学习一下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰虺

万水千山总是情,给点打赏行不行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值