- 买卖股票的最佳时机
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
假设在第n天出售,则第n天的最大获利为n天之前的最小值购入,在第n天卖出,这样获利最大。
class Solution {
public int maxProfit(int[] prices) {
int l=prices.length;
int[] dp=new int[l];
int[] mi=new int[l];
mi[0]=prices[0];
dp[0]=0;
int ma=0;
for(int i=1;i<l;i++){
mi[i]=Math.min(mi[i-1],prices[i-1]);//计算第n天之前的最小值
dp[i]=prices[i]-mi[i];//计算利润
ma=Math.max(dp[i],ma);
}
return ma;
}
}
- 买卖股票的最佳时机 II
给定一个数组 prices ,其中 prices[i] 是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
输入: prices = [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
与上一题的的区别是,可以进行多次交易,动态规划的核心是状态划分。
第一维:时间,第n天。
第二维:状态,是否持有股票(0,1)。
0表示无股票,则第i天无股票的最大利润为:
1.dp[i-1] [0]前一天也没有股票,与上一天相等。
2.dp[i-1] [1]+price[i],前一天有,这天卖掉了,加上今天的价格的收益。
1表示有股票,同上有两种状态。
class Solution {
public int maxProfit(int[] prices) {
int n=prices.length;
int[][] dp=new int[n][2];//0代表当前没有股票,1代表有
dp[0][0]=0;
dp[0][1]=-prices[0];
for(int i=1;i<n;i++){
dp[i][0]=Math.max(dp[i-1][1]+prices[i],dp[i-1][0]);
dp[i][1]=Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
}
return dp[n-1][0];
}
}
- 买卖股票的最佳时机 III
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
此题最多完成两次交易,首先进行状态划分。
1.有票,没卖过
2.无票,卖过一次
3.有票,卖过一次
4.无票,卖国两次
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int buy1 = -prices[0], sell1 = 0;//初始化
int buy2 = -prices[0], sell2 = 0;
for (int i = 1; i < n; ++i) {
buy1 = Math.max(buy1, -prices[i]);
sell1 = Math.max(sell1, buy1 + prices[i]);
buy2 = Math.max(buy2, sell1 - prices[i]);
sell2 = Math.max(sell2, buy2 + prices[i]);
}
return sell2;
}
}
- 买卖股票的最佳时机 IV
给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
给定参数k来限制交易次数。
则状态划分为三维分别是,第n天,是否持有股票,已经交易了i次。
注意对边界值的处理,第一天不可能交易1次及以上,都初始化为无穷小。
交易次数以卖出为统计标准。
第i天持有股票,要么是与上一天一样即dp[i-1][1][x];要么是上一天买入了股票,dp[i - 1][0][x] - prices[i]
若第i天无股票,要么与上一天一致,为dp[i-1][0][x];要么是上一天卖出了股票,dp[i - 1][1][x - 1] + prices[i]
class Solution {
public int maxProfit(int k, int[] prices) {
// 状态定义:dp[i][j][k]表示第i天持有或不持有股票在交易K次的情况下的最大利润,其中j取值0表示不持有,1表示持有
// 状态转移:1、如果第i天持有股票,这个股票有可能是前一天就持有的,这时候:dp[i][1][k]=dp[i-1][1][k]
// 2、如果第i天持有股票,这个股票有可能是当天新买入的,这时候:dp[i][1][k]=dp[i-1][0][k] - prices[i]
// 3、如果第i天不持有股票,可能是前一天就不持有股票,这时候:dp[i][0][k]=dp[i-1][0][k]
// 4、如果第i天不持有股票,可能是当天卖出了股票,这时候:dp[i][0][k]=dp[i-1][1][k-1] + prices[i]
// 所以,以上四种情况可以合成两种,即当天持有和不持有交易K次的最大收益
int n = prices.length;
if (n < 2) {
return 0;
}
int[][][] dp = new int[n][2][k + 1];
// 初始值,第0天持有,即买入
dp[0][1][0] = -prices[0];
// 初始值,第0天,不持有,即不操作
dp[0][0][0] = 0;
int inf = Integer.MIN_VALUE / 2;
// 使用x表示k的下标
for (int x = 1; x <= k; x++) {
// 第一天不可能交易1次及以上
dp[0][0][x] = dp[0][1][x] = inf;
}
for (int i = 1; i < n; i++) {
for (int x = 0; x <= k; x++) {
// 第i天持有股票且交易x次,持有的股票可能来自前一天,也可能是当天买入的
dp[i][1][x] = Math.max(dp[i - 1][1][x], dp[i - 1][0][x] - prices[i]);
// 第i天不持有股票且交易x次,原因可能是前一天就不持有,也可能当天卖出了
dp[i][0][x] = Math.max(dp[i - 1][0][x], x == 0 ? inf : dp[i - 1][1][x - 1] + prices[i]);
}
}
// 输出结果
//return dp[n-1][0][k]
return IntStream.of(dp[n - 1][0]).max().getAsInt();
}
}
不能返回return dp[n-1][0][k],因为最大值不一定交易了k次,但一定是最后一天,并且不持有股票的,所以在这二维确定的条件下搜索最大值返回。
- 最佳买卖股票时机含冷冻期
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
class Solution {
public int maxProfit(int[] prices) {
int n=prices.length;
int[][] dp=new int[n][2];//0代表当前没有股票,1代表有
dp[0][0]=0;
dp[0][1]=-prices[0];
for(int i=1;i<n;i++){
dp[i][0]=Math.max(dp[i-1][1]+prices[i],dp[i-1][0]);
if(i>1){
dp[i][1]=Math.max(dp[i-1][1],dp[i-2][0]-prices[i]);}//这里是-2。
else{
dp[i][1]=Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
}
}
return dp[n-1][0];
}
}