
tensorflow实战
tensorflow实战
嘀嗒嘀嘀嗒嘀
别低头,王冠会掉
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
记录tensorflow大坑之迷惑操作
1、TensorFlow 1.13.1: ImportError: libcublas.so.10.0: cannot open shared object file: No such file or directory #26209 参考:https://github.com/tensorflow/tensorflow/issues/26182#issuecomment-468882301 和h...原创 2019-12-01 16:54:53 · 274 阅读 · 0 评论 -
查看tensorflow是GPU版还是CPU版
import numpy import tensorflow as tf a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b)...转载 2019-12-01 15:22:48 · 1089 阅读 · 0 评论 -
tf读取文件流-----未解决
https://blog.csdn.net/u012759136/article/details/52232266转载 2019-05-28 17:26:47 · 217 阅读 · 0 评论 -
GRU - 文本情感分类
代码在 给一个拥抱 上 网络结构 inp = Input(shape=(maxlen,)) x = Embedding(max_features, embed_size)(inp) x = Bidirectional(CuDNNGRU(64, return_sequences=True))(x) x = GlobalMaxPool1D()(x) x = Dense(16, activation="...原创 2019-10-02 22:36:48 · 2295 阅读 · 0 评论 -
【tensorflow】Object DetectionAPI训练识别自己的数据集
一、数据准备 1.一个友好的标注工具 各种系统安装已经再此介绍的很详细了,linux下可以三行命令解决。 注意:图片要求是png或者jpg格式 1> . 标注信息存为xml文件,使用该脚本可以将所有的xml文件转换为1个csv文件(自行修改xml路径) 2> . 把生成的csv文件分成训练集和测试集 2.生成TFRecord文件 使用该脚本分别生成train.re原创 2018-11-08 18:42:47 · 964 阅读 · 0 评论 -
【python入门】tensorflow 小记
计算公式 需要计算:平方 矩阵内部和, 开方 # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np #两种定义初始数组的方法,但是注意一定用float,因为最后一步是开平方,整型会报错 # x1 = tf.constant([[1,2,3,4],[5,6,7,8],[9,10,11,12]],tf.float3...原创 2018-06-05 13:42:54 · 271 阅读 · 0 评论 -
搭建神经网络
摘自这里 1.搭建神经网络基本流程 定义添加神经层的函数 1.训练的数据 2.定义节点准备接收数据 3.定义神经层:隐藏层和预测层 4.定义loss表达式 5.选择optimizer 使loss达到最小 然后对所有变量进行初始化,通过sess.run optimizer,迭代1000次进行学习: import tensorflow as tf import numpy a...转载 2018-05-05 12:43:50 · 444 阅读 · 0 评论 -
Convolutional Neural Networks---Foundations of Convolutional Neural Networks
–摘自黄海广博士等人笔记,吴恩达的深度学习课程 1.边缘检测示例 神经网络的前几层是如何检测边缘的,然后后面的层有可能检测到物体的部分区域,更靠后的一些层可能检测到完整的物体,这个例子中就是人脸。 给了这样一张图片,让电脑去搞清楚这张图片里有什么物体,你可能做的第一件事就是检测图片的垂直边缘。(比如图片中的栏杆就对应垂线,行人的轮廓线也是垂线,这些线是垂直边缘器的输出。)同样,可...原创 2018-04-20 22:47:40 · 544 阅读 · 0 评论 -
tensorflow实战---手写体识别
1.softmax回归 准确率91%,较低 数据集下载自MNIST官网 包含四个压缩文件 不必解压放到目录就好 #完整代码 #仅做记录,详细解释有待补充 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_...转载 2018-05-05 18:40:54 · 1589 阅读 · 1 评论 -
tensorflow入门:基本语法------未完待续【TensorFlow中的Mini-batching】
以下是tensorflow包导入,默认在每一段代码里都有了 from __future__ import print_function,division#_future_必须放在最前边,这个模块比较特别,它可以导入那些在未来会成为标准python组成的新特性 import tensorflow as tf from sklearn.datasets import load_digits im...原创 2018-04-27 20:39:49 · 334 阅读 · 0 评论 -
Python入门错误集合
1.imshow()失败 import tensorflow as tf from sklearn.datasets import load_digits import matplotlib.pyplot as plt import numpy as np digits = load_digits() #载入数据集 plt.imshow(digits.image[12]) #获取标签为...原创 2018-04-27 20:42:19 · 342 阅读 · 0 评论 -
tensorflow入门:tensor类
tensor类 print("build a graph") a = tf.constant([[1,2],[3,4]]) b = tf.constant([[1,1],[0,1]]) print("a:",a) print("b:",b) print("type of a:",type(a)) c = tf.matmul(a,b) print("c:",c) print("\n")原创 2018-04-28 16:10:55 · 663 阅读 · 0 评论 -
《tensorflow 实战》笔记一:实现自编码器及多层感知机
1.自编码器 顾名思义,即可以使用自身的高阶特征编码自己。实际上也是一种神经网络,输入和输出是一致的。 借助稀疏编码的思想,目标是使用稀疏的一些高阶特征特征重新组合来重构自己。 特点很明显: 1)期望输入输出一致; 2)希望使用高阶特征来重构自己,不只是复制像素点。 2.单层tensorflow实现 我们的自编码器会使用到一种参数初始化方法:xavier initializati...原创 2018-05-15 20:40:43 · 954 阅读 · 0 评论 -
配置tensorflow踩的那些坑
1.安装的很顺利,遇到一个问题就百度一下,然后每次都能顺利解决,但是安装完之后,发现一篇博客说最好不要直接用pip安装,而是借助其他工具,因为在后边的配置环境会有雷等着你,目前没遇到雷,等遇见了就卸载重装,顺便来更新一下。 2.开发环境我用的pycharm,pycharm是我一早就安装好的,但是遇见一个坑,就是每次新建一个项目,总会重新加载一次tensorflow,导致每个文件都很大,然后设置默...原创 2018-04-26 19:30:59 · 336 阅读 · 0 评论