机器学习——k邻近算法(knn算法)

本文介绍了K近邻算法的基本原理,包括其分类和回归应用,以及常用的距离度量方法。重点讲解了如何选择K值,并通过游戏时长预测案例展示了其实现。此外,还提到在VSCode中使用KNN和注意事项,如特征处理、环境配置等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、K近邻(KNN)算法是一种常见的监督学习算法,用于分类和回归问题。它基于一个简单的思想:如果一个样本在特征空间中的K个最近邻居中的大多数属于某一个类别,那么该样本很可能属于该类别。

二、 基本原理:如下图,在一个样本集中,以需要预测的样本为半径中心(图中圆心),通过特定的距离计算方法将数据集中不同特征的数据进行与样本测距,并分布在以圆心为半径的圆上(图中的各个三角形菱形图,此时对于要预测的圆心点我们去选择距离圆心最近的k个点中相同特征最多的点来预测圆心样本的特征。

        例如当k=3时,图中距离中心样本的最多的是菱形,则预测中心样本也为菱形;而当k=5时,距离中心样本最多的则是三角形,则预测中心样本也为三角形。

        因此对于knn算法来说,k的取值是非常重要的,不同的取值预测的结果是不同的。

三、knn算法中常用的距离指标

                ·欧几里得距离:

        它也被称为L2范数距离。说白话点其实就是两点之间的直线距离,公式:

                                

       

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值