Spark Streaming整合Kafka(scala)

本文介绍了Spark Streaming整合Kafka的两种方法:Receiver和Direct方式。Receiver方式利用Kafka高级API,数据存于内存,效率低且易丢数据;Direct方式直接读取Kafka分区,效率高但需手动管理偏移量。文章提供了Receiver和Direct方式的编程示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark Streaming整合Kafka有两种方式:Receiver和Direct方式

两种方式的区别?

Receiver方式:接收固定时间间隔的数据(放在内存中的),使用Kafka高级的API,自动维护偏移量,达到固定的时间才进行处理,效率低并且容易丢失数据。

Direct直连方式:相当于直接连接到Kafka的分区上,使用Kafka底层的API,效率高,需要自己维护偏移量。(常用)

(1)Receiver方式

编写程序实现Receiver方式连接(KafkaReceiverStreaming.scala)

package com.fyy.spark.streaming

import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.{SparkConf, streaming}

/**
  * @Title: KafkaReceiverStreaming
  * @ProjectName SparkStreamingProject
  * @Description: Spark Streaming对接kafka的Receiver方式
  * @author fanyanyan
  */
object KafkaReceiverStreaming {
  def main(args: Array[String]): Unit = {
    if(args.length != 4){
      System.err.println("请输入参数: <zkQuorum> <group> <topics> <numThreads>")
      System.exit(1)
    }
    val Array(zkQuorum,group,topics,numThreads)= args

    val sparkConf = new SparkConf()
    val ssc = new StreamingContext(sparkConf, streaming.Seconds(5))

    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap

    // Spark Streaming对接Kafka
    val mess = KafkaUtils.createStream(ssc,zkQuorum,group,topicMap)

    // 进行词频统计(主要的代码逻辑)
    val result = mess.map(_._2).flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)

    result.print()

    ssc.start()
    ssc.awaitTermination()

  }

}

(2)Direct直连方式

编写代码实现Direct方式连接(KafkaDirectStreaming.scala)

package com.fyy.spark.streaming

import org.apache.commons.codec.StringDecoder
import org.apache.spark.{SparkConf, streaming}
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.kafka.KafkaUtils

/**
  * @Title: KafkaDirectStreaming
  * @ProjectName SparkStreamingProject
  * @Description: Spark Streaming对接Kafka的Direct方式(常用)
  * @author fanyanyan
  */
object KafkaDirectStreaming {
  def main(args: Array[String]): Unit = {

    if(args.length != 2){
      System.err.println("请输入参数: <brokers> <topics> <group>")
      System.exit(1)
    }
    val Array(brokers,topics,group)= args

    val sparkConf = new SparkConf()
    val ssc = new StreamingContext(sparkConf, streaming.Seconds(5))

    val topicSet = Set(topics)
    val kafkaParams = Map(
      "metadata.broker.list" -> brokers,
      "group.id" -> group,
      // 指定偏移量
      "auto.offset.reset" -> kafka.api.OffsetRequest.SmallestTimeString
    )


    // Spark Streaming对接Kafka(Direct方式)
    val mess = KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](
      ssc,kafkaParams,topicSet
    )

    // 进行词频统计(主要的代码逻辑)
    val result = mess.map(_._2).flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)

    result.print()

    ssc.start()
    ssc.awaitTermination()

  }

}

Spark Streaming集成Kafka官方网站:

http://spark.apache.org/docs/2.2.0/streaming-kafka-0-8-integration.html

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值