- 博客(9)
- 收藏
- 关注
原创 datawhale ai 夏令营学习笔记第三期 --深度学习在时间序列预测中的应用
【代码】datawhale ai 夏令营学习笔记第三期 --深度学习在时间序列预测中的应用。
2024-07-20 23:49:12
270
原创 基于Transformer的机器翻译任务进阶指南与上分技巧
在Transformer出现之前,序列到序列(Seq2Seq)模型主要依赖于循环神经网络(RNN)和卷积神经网络(CNN)来处理自然语言处理任务,尤其是机器翻译。RNN的局限性:RNN通过维护隐藏状态来捕捉序列中的依赖关系,但在处理长序列时,信息在传递过程中容易被遗忘,导致长期依赖信息的丢失。虽然注意力机制(Attention Mechanism)在一定程度上缓解了这一问题,RNN的串行计算本质仍然导致训练和推理的效率低下。CNN的局限性。
2024-07-20 22:40:11
995
原创 深度学习入门:详解Seq2Seq模型与机器翻译的Baseline实现
有参考答案的自动评价:这是最常见的评估方式,如BLEU(双语评估子程序)分数。这种架构使得解码器在生成每个单词时,都能够根据当前解码状态,动态地从编码器的序列中抽取相关信息,从而提高翻译质量,特别是在处理长序列时更为有效。在模型训练后,你需要评估模型的性能,通常使用验证集和测试集。上下文向量:利用注意力权重对编码器的隐藏状态进行加权求和,生成上下文向量,该向量包含了当前解码器状态所需的信息。解码器:在每个时间步,解码器接收上一步的输出、当前的上下文向量和前一时间步的隐藏状态,生成下一个单词的概率分布。
2024-07-15 20:23:57
782
原创 1. DDIM反转2. 音频扩散模型
最后,我们定义了一个 ddim_reverse 函数,用于使用训练好的模型对输入图片进行 DDIM 反转,并将结果保存到输出文件。完成任务后,可以对比分析原始图片、模糊小猫图片、替换小猫后的图片,从而了解 DDIM 反转技术在图像处理中的应用和效果。此外,可以尝试使用不同的图像和扩散程度,进一步探索 DDIM 反转技术的灵活性和适用范围。- 最后,将生成的小猫图像与原始的 demo 图片进行融合,得到一张中小猫被替换为小狗的图片。- 然后,对生成的模糊图像进行 DDIM 反转,使其恢复到清晰的小猫图像。
2023-11-10 15:40:15
468
1
原创 自行组装Stable Diffusion
稳定扩散模型(Stable Diffusion Model)是一种生成模型,可以用于解决非线性方程组问题。# x_train,y_train 是训练集的输入和输出。# x_val,y_val 是验证集的输入和输出。## 4. 加载数据集并划分训练集和验证集。## 3. 初始化模型、损失函数和优化器。## 6. 使用训练好的模型生成结果。## 2. 定义稳定扩散模型。## 1. 导入所需库。## 5. 训练模型。
2023-11-03 20:40:39
105
原创 实战类别挑战扩散模型
该模型结合了条件生成模型和扩散模型,在生成图像的同时预测图像的类别。将超分模块的输出作为生成模型的输入,再次进行训练,以便模型能够更好地生成高分辨率的图像。任务 1 和任务 2 任务 1:基础 - fine-tune 一个 fashion-mnist 类别引导的图像生成模型,并生成对应的图像。条件生成模型的训练:通过最小化条件生成损失函数,即让生成图像与真实图像之间的差异最小。扩散模型的训练:通过最大化条件概率,即让生成图像的类别预测与真实类别的概率分布尽可能接近。给定一个类别,模型将生成对应的图像。
2023-10-23 00:14:10
259
1
原创 扩散模型认识
扩散模型的实现:介绍了如何使用Hugging Face库来实现扩散模型,并提供了示例代码和说明。扩散模型的应用:讨论了扩散模型在自然语言处理、计算机视觉或其他领域中的应用案例。扩散模型的训练和评估:讨论了扩散模型的训练方法和评估指标。扩散模型的概述:介绍了扩散模型的基本概念和原理。
2023-10-16 22:13:29
70
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人