梯度提升树(Gradient Boosting Machines, GBM)是一种集成学习方法,通过迭代地训练决策树,并让每棵新的树拟合前一棵树的残差,从而逐步提高模型的准确率。下面是一个简单的Python实现GBM的例子:
实现思路:
- 使用决策树作为弱学习器。
- 每次训练新树时,使用当前模型的预测残差作为新树的目标。
- 将每棵树的预测结果加到最终的预测上,并通过学习率调节每棵树的贡献。
实现步骤:
- 首先导入必要的库。
- 实现GBM的主体逻辑,包括计算损失、拟合残差等。
- 使用均方误差作为损失函数。
Python代码实现:
import numpy as np
from sklearn.tree import DecisionTreeRegressor
class GradientBoostingRegressor:
def __init__(self, n_estimators=100, learning_rate=0.1, max_depth=3):
self.n_estimators = n_estimators # 弱学习器的数量
self.learning_rate = learning_rate # 学习率
self.max_depth = max_depth # 决策树的最大深度
self.trees = [] # 用于存储每棵决策树
def fit(self, X, y):
# 初始化模型为常量值,通常使用均值
self.init