Python语言实现梯度提升树 (Gradient Boosting Machines, GBM)算法

 梯度提升树(Gradient Boosting Machines, GBM)是一种集成学习方法,通过迭代地训练决策树,并让每棵新的树拟合前一棵树的残差,从而逐步提高模型的准确率。下面是一个简单的Python实现GBM的例子:

实现思路:

  1. 使用决策树作为弱学习器。
  2. 每次训练新树时,使用当前模型的预测残差作为新树的目标。
  3. 将每棵树的预测结果加到最终的预测上,并通过学习率调节每棵树的贡献。

实现步骤:

  • 首先导入必要的库。
  • 实现GBM的主体逻辑,包括计算损失、拟合残差等。
  • 使用均方误差作为损失函数。

Python代码实现:

import numpy as np
from sklearn.tree import DecisionTreeRegressor

class GradientBoostingRegressor:
    def __init__(self, n_estimators=100, learning_rate=0.1, max_depth=3):
        self.n_estimators = n_estimators          # 弱学习器的数量
        self.learning_rate = learning_rate        # 学习率
        self.max_depth = max_depth                # 决策树的最大深度
        self.trees = []                           # 用于存储每棵决策树
    
    def fit(self, X, y):
        # 初始化模型为常量值,通常使用均值
        self.init
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值