掌握LangChain Streaming:提升LLM应用响应性与实用性的技巧
在构建基于大型语言模型(LLM)的应用程序时,流式传输(Streaming)是提高用户体验的关键技术。通过逐步展示生成的内容,应用程序可以显得更加即时和响应迅速。在这篇文章中,我们将详细探讨LangChain的一些核心功能和流式传输技术,以及如何克服常见挑战。
引言
LLM应用往往需要数秒才能生成完整的响应,这远不如人类期望的200-300毫秒响应时间。通过流式传输技术,我们可以让应用在生成完整响应之前,逐步向用户展示输出,提升响应性。
主要内容
1. LangChain流式传输方法
LangChain中的重要组件如聊天模型、输出解析器、提示、检索器和代理实现了LangChainRunnable接口。该接口提供了两种通用流式传输内容的方法:同步流(sync stream)和异步流(async astream),后者还支持流式传输中间步骤。
2. 使用同步和异步流
所有Runnable对象实现了stream
同步方法和astream
异步变体。这些方法设计用于以块的形式流式传输最终输出,每当每个块可用时就立即呈现。在程序中要进行流式传输,所有步骤必须能够处理输入流,即一次处理一个输入块,并生成相应的输出块。
3. 处理复杂流
尽管某些步骤可能相对简单,例如发出LLM生成的标记,但解析部分JSON结果流的步骤则较为复杂。LangChain提供的Parser可以在JSON部分完成前就开始解析。
代码示例
以下是一个完整的代码示例,展示如何使用LangChain流式传输技术: