自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(346)
  • 资源 (431)
  • 收藏
  • 关注

原创 在线机考|2025年华为暑期实习&春招&秋招编程题(最新)——第1题_物流运输

摘要:题目描述了一个树形结构的快递配送问题,需要计算完成所有快递任务的总路径长度。通过BFS建立树的拓扑序,后序遍历统计每个节点的寄件和收件数量,最后累加所有边权值乘以对应任务数。算法使用邻接表存储树结构,时间复杂度为O(N+M)。代码提供了C++、Python和Java三种实现,核心思路相似。

2025-06-12 11:53:06 211

原创 在线机考|2025年华为暑期实习&春招&秋招编程题(最新)——第2题_网络整改

题目要求计算从树中移除最少节点数,使剩余节点构成一棵所有叶节点深度相同的树。给定树结构,程序通过动态规划自底向上计算每个子树在不同目标叶深度时的最大保留节点数。核心思想是遍历所有可能的叶深度(0到最大深度),对于每个深度,验证保留节点数,最终输出总节点数减去最大保留节点数。 摘要(150字):本文解决树结构调整问题,要求移除最少节点使剩余树的所有叶节点深度相同。采用动态规划方法,预处理节点深度和子树结构,遍历每个可能的叶深度,计算相应最大保留节点数。程序通过后序遍历和分层处理优化计算,最终输出需要移除的最小

2025-06-12 11:09:32 54

原创 科研学习|科研软件——激活后的Origin导出图时突然出现了demo水印

摘要 解决导出图形带"demo"水印问题有两种方法:1) 右击软件图标选择"以管理员身份运行";2) 进入软件安装目录,双击运行Origin64.exe文件。这两种方式都可以去除导出图形中的演示版水印标记,确保输出干净的专业图表。

2025-06-01 22:42:15 428

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第3题_个性化歌单推荐系统_300分(十一)

假设你是音乐服务的开发者,为了提高用户体验需要解决推荐歌单的同质化问题,保证推荐给用户的所有歌单不包含相同歌曲的。给定一个包含N个歌单和M条歌单重复记录,每个歌单用一个从1到N的整数编号,歌单重复记录包含两个歌单的ID,表示两个歌单有相同的歌曲。你的任务是对歌单进行合并,找出合并后的最小歌单数量,合并的歌单中不能有相同的歌曲。

2025-01-07 00:15:00 681 2

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第2题_公司园区里的建筑群_200分(十)

某公司基地园区很大,里面有N个建筑,依次编号为1到N,通过M条路将这些建筑连接在一起,这N个建筑根据之间的距离,被分为不同的建筑群。云小核喜欢饭后散步,并用步数计算了每条路的长度。经过一段时间的散步,云小核发现了一个规律,两个建筑群间最近的两个建筑之间,步数大于K步。两个建筑群之间,可能没有路。云小核把每条路的步数给了你,请你计算园区里有多少个建筑群?

2025-01-06 00:15:00 586

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第1题_最强大脑游戏_100分(九)

某最强大脑游戏要求:选手在一个整数序列中(整数取值为[1, 10]),自行去掉K个整数,得到一个新的整数序列,-使得整数序列左到右拼接起来后,得到的整数值最大。那么假设你是优秀的选手,在给定这个整数序列之后,你能够得到的最大整数值是多少?

2025-01-05 00:15:00 453

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第3题_PCB印刷电路板布线_300分(八)

在PCB印刷电路板设计中,器件之间的连线需要避免线路的阻抗值增大、而且赛件之间还有别的器件和别的干扰源,在布线时我们希望受到的干扰尽量小。现将电路板简化成一个M×N的矩阵,每个位置(单元格)的值表示其源干扰度。如果单元格的值为0,表示此位置没有干扰源;如果单元格的值为非0,则表示此位置是干扰源,其值为源干扰度。连线经过干扰源或干扰源附近会增加连线的总干扰度。位置A[x, y]的干扰源的源干扰度为d(d>0),则连线的干扰度计算如下:1、若连线经过位置A[x, y],则其总干扰度会增加d;

2025-01-04 00:15:00 846

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第1题_拔河比赛队员选拔_100分(八)

某团队近期需要组织一支队伍参加拔河比赛,团队共有队员n人,比赛队员人数要求为m人,n>m,n个队员按编号,1到n的顺序参加k轮力量测试,每轮的测试成绩用正整数表示。根据n个队员的力量测试成绩选择比赛队员m人,先选择k轮测试中最好成绩最大的队员,若有多人的最好成绩相等,则优先选择其中第二好成绩最大的队员,依次类推,最后若还有相等的情况,则优先选择编号较小的队员。每个人只能被选择一次。

2025-01-03 00:15:00 393

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第2题_公司班车上车点规划_200分(七)

某公司基地搬迁到新地点之后,新规划了一条班车路线,在这条路线上会经过N个小区,计划在这些小区中挑选出M个作为上车点,小区的位置可以用一维坐标上的点来表示,小区到上车点的距离为两个坐标点差值的绝对值。现在给定N个小区的位置,即一维坐标上的整数点:x1、x2、…、xN $ ,我们希望所有小区到最近上车点的距离总和尽可能小,请计算这个最大值能够是多少?当该小区被作为上车点,该小区到上车点的距离为0。

2025-01-02 00:15:00 350

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第2题_微服务发布时长_200分(六)

部署发布时,通常需要部署所有的现网局点。局点的部署过程存在依赖关系,因为某些局点需要等其他的局点部署完成后,才能开始部署。另外这些局点由于网络或地理位置的原因,所花费的部署时间有可能是不同的。给定一个大小为n的数组region存储局点之间的部署依赖关系,其中region[i]是第i个局点的依赖局点,0

2025-01-01 17:38:04 503

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第3题_订单取餐顺序_300分(五)

肯德基店销售炸鸡、薯条、可乐三种实物,准备三种食物的速度一样,且三种食物同时制作;三种食物同时制作,按订单顺序进行分发食物。现在有N个订单,每个订单用连续三位数组元素表示,数组的元素是对应食物的份数。N最大为100万,每个订单里每份食物最多100万份。请计算N个订单的取餐顺序,如果多个订单可以同时取餐,按订单号从小到大排序。

2024-12-31 00:15:00 529

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——第1题_水果忍者_100分(四)

“水果忍者”,请计算此局游戏最高得分。

2024-12-30 00:15:00 780

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——中等、较难和困难题目Python3答案(三)

【代码】牛客网|华为在线编程(最新)——中等、较难和困难题目Python3答案(三)

2024-12-29 00:15:00 237

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——中等、较难和困难题目Python3答案(二)

【代码】牛客网|华为在线编程(最新)——中等、较难和困难题目Python3答案(二)

2024-12-27 14:59:41 244

原创 在线机考|2024华为实习&秋招&春招编程题(最新)——中等、较难和困难题目Python3答案(一)

【代码】牛客网|华为在线编程(最新)——中等、较难和困难题目Python3答案(一)

2024-12-27 14:35:19 694 1

原创 人工智能|预训练大模型——混合专家模型(MoE)

MoE,全称为Mixed Expert Models,混合专家模型,简单理解就是将多个专家模型混合起来形成一个新的模型。在理解MOE之前,有两个思想前提,可以帮助我们更容易地理解MOE架构。一是在现实生活中,如果有一个包括了多个领域知识的复杂问题,我们该使用什么样的方法来解决呢?最简单的办法就是先拆分任务到各领域,然后把各个领域的专家集合到一起来攻克这个任务,最后再汇总结论。这个思想可以追溯到集成学习,MoE和集成学习的思想异曲同工,都是集成了多个模型的方法,区别在于集成学习不需要将任务分解为子任务。

2024-12-19 15:24:30 1595

原创 科研学习|论文解读——智能体最新研究进展

Can Modern LLMs Act as Agent Cores in Radiology~Environments?Achieving Collective Welfare in Multi-Agent Reinforcement Learning via Suggestion SharingA systematic review of norm emergence in multi-agent systemsAgent-based Video TrimmingGROOT-2: Weakly Supe

2024-12-19 14:44:45 783

原创 科研学习|论文解读——顶会论文中多模态数据融合成果

该论文提出了一种名为“逐步融合”(Progressive Fusion)的多模态集成方法,旨在缓解早期融合和后期融合的缺点。传统多模态集成方法将各模态的特征在不同阶段进行融合,但这可能导致信息损失。逐步融合通过向后连接,将后期融合表示引入早期层级,使模型逐步完善融合后的多模态表示,从而增强表达能力。实验表明,该方法在情感检测、媒体分析等任务中有效提高了模型的性能和鲁棒性。本研究开发了一个平衡多模态学习框架(BalanceMLA),聚焦于音视频多任务学习中的模态不平衡问题,特别是语音与情感识别。

2024-12-18 15:19:57 1701

原创 人工智能|预训练大模型——思维链详解[Chain of Thought, CoT]

Chain-of-Thought(CoT)是一种改进的Prompt技术,目的在于提升大模型LLMs在复杂推理任务上的表现,对于复杂问题尤其是复杂的数学题大模型很难直接给出正确答案。如算术推理(arithmetic reasoning)、常识推理(commonsense reasoning)、符号推理(symbolic reasoning)。COT通过要求模型在输出最终答案之前,显式输出中间逐步的推理步骤这一方法来增强大模型的算数、常识和推理能力。简单,但有效。2022 年,在 Google 发布的论文。

2024-12-17 16:46:31 4341

原创 科研学习|研究方法——访谈法

访谈,就是指以,调查者根据调查需要,并根据回答,以此用于学术研究的方法。与文献研究法、数据等研究方式不同,,整个研究工作都需要围绕着人进行,是一项直接从受众身上得到所需数据或结论,并作用于研究对象的方法。多数情况下,访谈法更多地被应用于心理学研究,但随着研究需要的扩大,现在有许多其他学科也将访谈法视为重要的研究方法。等分类。

2024-12-13 08:00:00 3209

原创 环境配置——Win10更新后严重卡顿?教你几招快速解决系统卡顿问题

通过检查并优化启动项、清理系统垃圾文件、更新驱动程序、调整虚拟内存以及检查并修复系统文件等方法,可以有效解决Windows 10更新后出现的系统卡顿问题。定期进行系统维护和备份,保持系统和软件更新,必要时进行硬件升级,能够进一步提高系统的稳定性和性能。

2024-12-12 00:15:00 3703

原创 人工智能|自然语言处理——机器翻译评价指标Bleu和Rouge

​在机器翻译任务中,BLEU 和 ROUGE 是两个常用的评价指标,BLEU 根据精确率(Precision)衡量翻译的质量,而ROUGE 根据召回率(Recall)衡量翻译的质量

2024-12-11 10:23:51 1369 1

原创 编程语言|python3——GUI编程

1.python提供了多个图形开发界面库tkinter(import tkinter) :Tkinter 模块(Tk 接口)是 Python 的标准 Tk GUI 工具包的接口wxPython(import wx) :wxPython 是一款开源软件,是 Python 语言的一套优秀的 GUI 图形库Jytyhon(import sys sys.path.append(a.jar)

2024-12-03 00:30:00 2207 2

原创 环境配置|联想G510笔记本电脑换屏——操作步骤详解

前一段时间,电脑放在包中不知道什么原因,电脑屏幕发生了挤压,屏幕出现了漏液的情况,右下角出现了两个黑色的圆圈,之后查询了一下换屏费用... ... 果断选择自行淘宝购买(比较便宜,本人对屏幕的分辨率并没有什么太高要求)并进行安装,现将整个的安装过程分享如下:1.购买对应的笔记本液晶屏幕2.拔掉电源线,卸除笔记本电池一来是为了硬件的安全,二来是为了更加方便的拆除屏幕的外壳3.

2024-12-02 07:00:00 5515 3

原创 科研学习|论文解读——基于旅游知识图谱的游客偏好挖掘和决策支持

目前,旅游管理研究的重点是通过对异构用户生成的内容进行广泛分析,来理解旅游偏好的波动,制定有针对性的发展策略。然而,鉴于在线景点评论涉及过多的混合和无形维度,广泛使用的无监督文本挖掘可能是不完整的或不准确的。此外,现有文献通常局限于几个旅游目的地和起源地的某些类型的景点,很难保证具有全面的洞察力。为了克服这些局限性,本研究提出了一种新的知识图谱驱动框架,该框架涉及旅游知识图谱(TKG)的系统构建和深入的研究与推理。

2024-12-01 23:06:24 1258

原创 人工智能|计算机视觉——微表情识别(Micro expression recognition)的研究现状

MEGC2019中的四篇工作,虽然使用的网络结构各不相同,但思路类似,都使用了微表情的Apex帧表示整段表情的特征。总体而言,关于Apex的光流是比较好的特征形式,而Transfer learning+Domain Adaptation对于模型的效果提升也是巨大的。

2024-11-19 23:19:41 3561 1

原创 科研学习|论文解读——Past Present and Future of Industry4.0 a systematic literature review

工业4.0的过去、现在和将来——系统性文献综述和研究议程提案

2024-11-16 00:15:00 1385

原创 人工智能|预训练大模型——常用大模型的原理介绍

这些模型使用表中的超参数构建。这三个模型使用相同的数据和词汇表进行相同的训练(除了批量大小),feed-forward size dff始终为dmodel的4倍,注意力头大小始终为256。在训练期间,数据集不按其大小进行采样,而是质量较高的数据集采样更频繁,因此CommonCrawl和Books2数据集在训练期间采样不到一次,但其他数据集采样2-3次。虽然具体的训练细节没有公布,但一个有意思的事情是,在GPT4中的技术报告中,上述表格中的实验证明RLHF基本不起作用,甚至有些情况会降低效果。

2024-11-15 16:45:25 1279

原创 人工智能|预训练大模型——基于Ollama+AnythingLLM搭建本地私有知识库系统

AnythingLLM 是 Mintplex Labs 开发的一款可以与任何内容聊天的私人ChatGPT,是高效、可定制、开源的企业级文档聊天机器人解决方案。它能够将任何文档、资源或内容片段转化为大语言模型(LLM)在聊天中可以利用的相关上下文。AnythingLLM 支持多种文档类型(PDF、TXT、DOCX等),具有对话和查询两种聊天模式。

2024-09-26 22:12:38 3847

原创 人工智能|预训练大模型——全球医疗大模型

谷歌和DeepMind的科研人员在《自然》杂志上发表了一项研究,根据其研究结果,一组临床医生对谷歌和DeepMind团队的医疗大模型Med-PaLM回答的评分高达92.6%,与现实中人类临床医生的水平(92.9%)相当。

2024-09-17 15:58:32 3177

原创 人工智能|集成学习——混合专家模型 (MoE)

与稠密模型相比,预训练速度更快与具有相同参数数量的模型相比,具有更快的推理速度需要大量显存,因为所有专家系统都需要加载到内存中在微调方面存在诸多挑战,但 近期的研究 表明,对混合专家模型进行指令调优具有很大的潜力。为了实现大模型的高效训练和推理,有的是从模型底层下手,比如直接改变底层模型架构,将原来的Transformer架构改成近期新出的基于状态空间模型(SSM)的mamba架构;

2024-09-12 11:21:44 2053 2

原创 科研学习|论文解读——OceanGPT:用于海洋科学任务的大型语言模型

•海洋科学语料库包含多个领域和主题 ,每个主题都有其独特的数据特征和模式。为了有效地模拟和获取这些数据 ,我们提出了 一种领域指令生成框架DOINSTRUCT。通过多代理合作获取海洋指令。每个代理都被视为特定领域(主题)的专家 ,并负责生成相应的数据。它不仅保证了数据的专业性和准确性 ,而且允许并行高效地生成大量数据。•我们根据海洋学专家的专业知识 ,将海洋科学中的数据手动分类为五个主要的海洋主题:科学和研究、资源和开发、生态与环境、技术和工程、生活和文化等。

2024-09-03 16:11:52 1494 6

原创 编程语言|Python——为什么0.1+0.2≠0.3(深入理解Python中的浮点数运算)

在python中可以采用采用round()函数,对数据进行处理。round()函数的格式:round(x, d), 其中x表示需要被处理的数据,d表示要返回的小数位数,即round(x, d)代表返回参数x的四舍五入的有 d 位小数的一个数字。d=0表示取整,d=1表示要返回一位小数,以此类推。此外,round()会自动四舍五入。

2024-08-01 10:51:42 1257 1

原创 人工智能|机器学习——Aho-Corasic多模匹配算法的学习、理解和应用(Python)

2.1 Aho-Corasick算法的定义Aho-Corasick(简称为AC自动机),是一种基于前缀的,使用了确定有限自动机(DFA)原理的,字符串多模匹配算法。什么是DFA?DFA也就是确定有限自动机,英文全称是Deterministic Finite Automaton。具体的细节介绍,可以参照百度百科、维基百科,以及《算法导论》之类的算法书。在这里,我们尝试用通俗的语言和图示来解释一遍。首先,什么是自动机(A)。自动机就是一个代码块。这段代码块只做一件事,那就是接收输入值和状态值输出。

2024-07-28 10:56:51 905

转载 环境配置|Neo4j数据库——Neo4j安装与配置以及JDK安装与配置教程(详细)

JDK=17 Neo4j=5.15(win10也可以)由于是基于Java的图数据库,运行Neo4j需要启动JVM进程,因此必须SE的JDK。配置 JDK环境,为以后能适应Springboot,请选择最低JDK1.8的环境。

2024-07-17 22:35:23 3417

原创 环境配置|PyCharm——Pycharm本地项目打包上传到Github仓库的操作步骤

通过Ctrl+Alt+S快捷组合键的方式,打开设置,导航到版本控制一栏中的Git,在Git可执行文件路径中,输入Git.exe。按照下图顺序,依次点击,完成测试。输出如图标④的结果,即可完成测试。输出下图结果,配置Git成功,如本地未安装Git,需自行安装。下图栏中不输入任何配置信息,直接点击测试,如本地端有安装并配置Git,也能够自动弹出Git默认安装路径。点击测试即可。

2024-07-16 15:40:24 917

原创 人工智能|深度学习——常用的神经网络优化算法(从梯度下降到 Adam!)

优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x)。模型内部有些参数,是用来计算测试集中目标值Y的真实值和预测值的偏差程度的,基于这些参数,就形成了损失函数E(x)。比如说,权重(W)和偏差(b)就是这样的内部参数,一般用于计算输出值,在训练神经网络模型时起到主要作用。在有效地训练模型并产生准确结果时,模型的内部参数起到了非常重要的作用。这也是为什么我们应该用各种优化策略和算法,来更新和计算影响模型训练和模型输出的网络参数,使其逼近或达到最优值。

2024-07-15 11:44:18 1196

原创 心理学|心理咨询概论——心理咨询概论单科作业(中科院)

咨询结束后,心理咨询师与求助者的关系也应终止┋C、咨询师对咨询效果的预期,既不能过分保守,也不能冒进┋D、心理咨询师不介入、不解决求助者生活中的具体问题。、以下关于心理咨询师需要具备的一些个人特质(即对人的心理活动的感受性、丰富的想象力、思维的敏捷性与灵活性)的叙述,正确的是( )。、整合身体、情感、认知、情境和行为系统┋B、研究和实践的整合┋C、各种心理疗法的理论和技术的整合┋D、个人和职业的整合。、个体未表达出来的情感,包括悔恨、愤怒、怨恨、痛苦、焦虑、悲伤、罪恶、遗弃感等在完形疗法中称为( )。

2024-07-10 18:16:37 644

原创 心理学|变态心理学&健康信息学——变态心理学与健康心理学单科作业题(中科院)

健康的心理活动是一种处于动态平衡的心理过程┋B、它涵盖一切有利于个体生存与发展的心理活动┋C、它是围绕心理健康常模,在一定范围内上下波动的相对平衡过程┋D、它在某一时间段内,展现着自身的正常功能。、精神分裂症患者在言谈或书信中,其单独语句在语法结构上是正确的,但主题之间、语句之间缺乏内在意义上的连贯性和应有的逻辑性,这种症状是( )、在应对压力过程中个体变得敏感、脆弱,即使是日常微小的困扰,都可引发个体强烈的情绪反应,说明其处于“一般适应征候群”的( )

2024-07-03 14:58:55 725

原创 心理学|人格心理学——人格心理学单科作业(中科院)

人格的统合性体现了人格的组织功能、匹配功能和健康功能┋B、人格决定一个人的生活方式,甚至有时会决定一个人的命运┋D、人格的内在的统一性遭到破坏,就会产生心理冲突,出现各种适应困难。、霍尼所说的( )是指个体在此时此地所表现出来的一切存在的总和,是别人所能观察到的客观存在,独立于个体的自我概念和知觉。、根据卡特尔的理论,在根源特质中,( )是由遗传决定的特性,决定个体对情境做出反应的速度、能量、脾气等。、人格决定一个人的生活方式,甚至有时会决定一个人的命运,反映的是人格的( )

2024-07-01 12:15:49 801

人工智能-预训练大模型-基于预训练模型 BERT 的阅读理解

基于预训练模型 BERT 的阅读理解 在这里,我们将使用来自 google 的预训练模型 bert 构建一个机器阅读理解系统,这是 NLP 深度学习的最新进展。 斯坦福问答数据集 (SQuAD) 是最早的大型英语阅读理解数据集之一。从模型的角度来看,输入以 Context / Question 对的形式出现,输出是 Answers:整数对,为 Context 中包含的答案文本的开头和结尾编制索引。第二届中文机器阅读理解评估研讨会(2018 年)发布了部分类似于 SQuAD 的数据集,我们在这个例子中使用了它。 该模型建立在 pytorch-transformers 之上,有助于将 BERT、GPT、GPT2 等预训练模型用于下游任务。该存储库包括用于多个 NLP 任务(包括问题解答)的各种实用程序和训练脚本。

2024-12-12

人工智能-预训练大模型-简洁易用版TinyBert:基于Bert进行知识蒸馏的预训练语言模型

简洁易用版TinyBert:基于Bert进行知识蒸馏的预训练语言模型 本项目是基于华为的TinyBert进行修改的,简化了数据读取的过程,方便我们利用自己的数据进行读取操作。 TinyBert的训练过程: 1、用通用的Bert base进行蒸馏,得到一个通用的student model base版本; 2、用相关任务的数据对Bert进行fine-tune得到fine-tune的Bert base模型; 3、用2得到的模型再继续蒸馏得到fine-tune的student model base,注意这一步的student model base要用1中通用的student model base去初始化;(词向量loss + 隐层loss + attention loss) 4、重复第3步,但student model base模型初始化用的是3得到的student模型。(任务的预测label loss)

2024-12-12

人工智能-开源情报-基于开源威胁情报AlienVault,排查IP地址及域名的恶意性

基于开源威胁情报AlienVault,排查IP地址及域名的恶意性 运行事例 usage: hot_ip.py --pcapfile=./out.pcap –d -c #数据包解析模式,对目的IP地址的恶意性进行排查 usage: hot_ip.py --IPfile=./iplist.txt -c #IP清单文件解析模式,排查清单中的IP地址的恶意性 usage: hot_ip.py --pcapf=./out.pcap -p #数据包解析模式,对域名地址的恶意性进行排查

2024-12-01

人工智能-开源情报-本项目致力于收集网上公开来源的威胁情报,主要关注信誉类威胁情报(如IP/域名等),以及事件类威胁情报

本项目致力于收集网上公开来源的威胁情报,主要关注信誉类威胁情报(如IP/域名等),以及事件类威胁情报 Ti_Collector为Threat Intelligence Collector,主要关注网上公开的信誉类威胁情报和事件类威胁情报。 信誉类威胁情报主要来源于一些安全社区的分享;事件类威胁情报主要来源于安全企业的咨询分享。 这些威胁情报数据通过爬虫手段,经分类处理后自动存入到数据库中,以构建自身的威胁情报库。 同时,我们提供一个捕获和查询本机DNS纪录中是否存在威胁行为的程序。

2024-12-01

人工智能-检索增强生成-基于BM25、BGE的检索增强生成RAG示例

基于BM25、BGE的检索增强生成RAG示例 1.1 服务器测试环境 实验环境:实体GPU服务器,NVIDIA RTX 4090 / 24GB,CentOS 7.9,Anaconda3-2019.03,CUDA 12.4 如果没有GPU服务器,可以租用AutoDL等平台的。服务器的租用及基础环节的安装这里就不赘述了

2024-11-19

人工智能-检索增强生成-利用开源大模型,通过RAG(检索增强生成)技术,实现基于企业内部知识图谱的,可内网运行的大模型智能客服

利用开源大模型,通过RAG(检索增强生成)技术,实现基于企业内部知识图谱的,可内网运行的大模型智能客服

2024-11-19

人工智能-大模型-一个智能问答系统,能够自动将用户的自然语言问题转换成 SQL 查询,并以可视化形式展示结果

一个智能问答系统,能够自动将用户的自然语言问题转换成 SQL 查询,并以可视化形式展示结果 用户使用自然语言查询数据。基于 Python、MySQL 和 Milvus 构建,将用户的问题转换为 SQL 查询,安全地执行,并产生符合echarts的数据可视化呈现结果。

2024-11-15

人工智能-大语言模型-基于ChatGLM-6B + LoRA的Fintune方案

基于ChatGLM-6B + LoRA的Fintune方案 准备 显卡: 显存 >= 16G (最好24G或者以上) 环境: python>=3.8 cuda>=11.6, cupti, cuDNN, TensorRT等深度学习环境 pip3 install -r requirements.txt 其中requirements.txt中的安装包bitsandbytes 建议安装0.41.2.post2这个版本,以前的版本可能会提示报错: bitsandbytes/libbitsandbytes_cpu.so: undefined symbol: cget_col_row_stats 数据预处理 转化alpaca数据集为jsonl python cover_alpaca2jsonl.py \ --data_path data/alpaca_data.json \ --save_path data/alpaca_data.jsonl \ tokenization python tokenize_dataset_rows.py \ --jsonl_pa

2024-11-13

人工智能-大语言模型-基于Bert的预训练大语言推荐模型

基于Bert的预训练大语言推荐模型 基于Bert的预训练大语言推荐模型 基于Bert的预训练大语言推荐模型 下载后配置好环境即可直接使用

2024-11-13

人工智能-大语言模型-基于人工智能标记语言 (AIML)和开放域问答(WebQA)的深度智能对话模型

基于人工智能标记语言 (AIML)和开放域问答(WebQA)的深度智能对话模型 环境说明 Linux/Python2.7/PyCharm 安装依赖 $ pip2 install jieba $ pip2 install aiml $ pip2 install lxml $ pip2 install beautifulsoup4 $ pip2 install flask 运行流程 Working directory: chatbot-aiml-webqa/core $ cd chatbot-aiml-webqa/core $ python2 web/server.py (or $ nohub python2 web/server.py) > ...... > * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit) CURL: $ curl "0.0.0.0:5000/chat" -d "message=新闻" $ curl "0.0.0.0:5000/chat" -d "message=天气" $ curl "0.0.0

2024-11-05

人工智能-大语言模型-基于企业私有知识库的LLM大语言模型的智能客服机器人问答系统,支持私有化部署

基于企业私有知识库的LLM大语言模型的智能客服机器人问答系统,支持私有化部署 能力 1、专属 AI 问答系统 通过导入企业已有知识构建知识库,让 AI 机器人使用关联的知识库回答问题,快速构建企业专属 AI 问答系统。 2、一键接入模型 ChatWiki已支持全球20多种主流模型,只需要简单配置模型API key等信息即可成功接入模型。 3、数据自动预处理 提供自动分段、QA分段、手动输入和 CSV 等多种方式导入数据,ChatWiki自动对导入的文本数据进行预处理、向量化或 QA 分割。 4、简单易用的使用方式 ChatWiki采用直观的可视化界面设计,通过简洁易懂的操作步骤,可以轻松完成 AI 问答机器人和知识库的创建。 5、适配不同业务场景 ChatWiki为 AI 问答机器人提供了不同的使用渠道,支持H5链接、嵌入网站、桌面客户端等,可以满足企业不同业务场景使用需求。

2024-11-05

人工智能-大语言模型-基于大型语言模型的评论回复机器人

基于大型语言模型的评论回复机器人 本项目为一个基于大语言模型的视频评论回复系统,包含服务端脚本与移动端工程文件。其中服务端由一个负责生成回复的回复服务脚本与一个负责与移动端及目标网站通信的数据服务脚本组成;移动端则为 HarmonyOS 元服务形式,提供完整服务与桌面万能卡片。 文件结构 ├───client │───server ├───utils │ └───scripts 项目的主要程序文件存放在 client/ 与 server/ 下。其中 client/ 为移动端程序的 DevEco Studio 元服务工程项目,server/ 则包含了负责生成回复的 reply-server.py 与一个负责与移动端及目标网站通信的 data-server.py 组成。 文件夹 utils/ 包括一个工具脚本 compress_code.py,可以将代码缩进、换行全部删去变成一行紧密排列的文本,方便与 GPT-4 进行交流,向 AI 询问代码建议(GPT-4 对代码的理解能力远高于人类,不需要缩进、换行等)。

2024-11-05

人工智能-扩散模型-基于扩散模型stable diffusion的T恤图案设计和基于HR-VITON的虚拟试衣项目

基于扩散模型stable diffusion的T恤图案设计和基于HR-VITON的虚拟试衣项目 计算机视觉课程设计项目:基于Stable Diffusion的T-shirt图案设计和虚拟换衣技术 基本实现方法: Stable Diffusion结合Dreambooth实现文本指导下的T-shirt图案生成; 利用U2NET模型对人像和衣服掩码进行分割; 借鉴HR_VITON框架实现虚拟换衣。

2024-10-28

人工智能-机器学习-基于各种机器学习和深度学习的中文微博情感分析

基于各种机器学习和深度学习的中文微博情感分析 项目说明 训练集10000条语料, 测试集500条语料 使用朴素贝叶斯、SVM、XGBoost、LSTM和Bert, 等多种模型搭建并训练二分类模型 前3个模型都采用端到端的训练方法 LSTM先预训练得到Word2Vec词向量, 在训练神经网络 Bert使用的是哈工大的预训练模型, 用Bert的[CLS]位输出在一个下游网络上进行finetune。预训练模型

2024-10-24

人工智能-大模型-基于DPO算法微调语言大模型,简单好上手

基于DPO算法微调语言大模型,简单好上手 在使用之前请确保您已经按照格式准备了数据,下面需要修改以下路径,即可运行该项目,在dpo_train.py的run函数下: 注意file是一个json文件。 file = '' model_file = '' model_save_path = '' output_dir = '' 在命令行中: python dpo_train.py 后台启动该项目: ps: 在后台挂载启动,这样关了服务器代码还是在运行的,不会断掉。 nohub python dpo_train.py > train_log.log 启动tensorboard查看日志: 确保已经安装了tensorboard pip install tensorboard -i https://pypi.tuna.tsinghua.edu.cn/simple tensorboard --logdir='your path'

2024-10-21

人工智能-大模型-基于大模型的企业内部知识库和工具流系统,web界面,完全局域网内网部署(外网隔离)

基于大模型的企业内部知识库和工具流系统,web界面,完全局域网内网部署(外网隔离) 对于本项目,或者说该类型的应用场景,应该着眼于如下三个方面的深入开发: 1、文档智能 —— 更加智能的处理各种类型文档,尤其是复杂文档的ocr、layout解析等。本项目代码仓对应 backend/scholar/document process 2、RAG —— 不过这一块有很多优秀的开源项目,学术界目前进展也很蓬勃。本项目代码仓对应 backend/scholar 以上两块其实我理解行业会不断涌现出优秀的作业,大家借鉴就好,但第三点可能是需要致力于这个业务方向的同学特别思考的 3、符合信创要求的llm本地部署和加速方案 —— 有外网隔离要求的业务场景大部分可能都是国企、政务了,“信创”要求是早晚躲不过的……这方面我个人认为应该特别关注基于arm架构的cpp迁移方案,目前行业内也有不少开源方案可供参考。

2024-10-21

人工智能-大模型-基于大模型ChatGLM,微调方式为LORA,集SFT、RM、PPO算法为一体项目

基于大模型ChatGLM,微调方式为LORA,集SFT、RM、PPO算法为一体项目 要求 Python 3.8+ 和 PyTorch 1.13.1 Transformers、Datasets、Accelerate、PEFT 和 TRL protobuf、cpm_kernels 和 sentencepiece jieba、rouge_chinese 和 NLTK(用于评估) gradio 和 mdtex2html(用于 web_demo.py) 和强大的 GPU! 开始 数据准备(可选) 有关数据集文件格式的详细信息,请参阅查看。您可以使用单个文件或包含多个文件的数据集加载脚本来创建自定义数据集。data/example_dataset.json

2024-10-21

人工智能-大模型-基于外挂知识库的大模型问答

基于外挂知识库的大模型问答 主要流程 1.加载LLM、加载embedding模型、加载reranker模型 2.向量知识库构建、BM25知识库构建 3.多路召回与排序,包括bm25召回、bge召回、gte召回,然后使用bge-reranker进行精排,选取得分最高的top-3与问题同时作为输入到llm的上下文。并使用jieba分词对于问题进行分词,加入一层关键词判断,提高匹配精度,同时可根据关键词判断是否有答案。

2024-10-21

人工智能-大模型-基于大模型的高质量情感虚拟人系统

基于大模型的高质量情感虚拟人系统 基于大模型的高质量情感虚拟人系统(Gradio+FUNASR+ChatGLM2-6B+GPT-SOVITS+EAT+GFPGAN)

2024-10-21

人工智能-大模型-基于yolov4的老鼠位置检测,并且裁剪了模型大小

基于yolov4的老鼠位置检测,并且裁剪了模型大小 基于pytorch+cuda框架开发 总体框架使用yolov4 backbone使用ghost neck部分使用mobilenetv2的InvertedResidual替换卷积层 跟踪使用SORT(simple online realtime track) 模型由yolov4的240M->30M.Neck SPP部分不变.FPN部分减少了特征层层数.Head部分还暂未修改 跟踪只是基本的卡尔曼滤波+匈牙利匹配,匈牙利匹配是根据iou,这段刚开始准备.准备移植deep sort的马氏距离

2024-10-21

深度学习之PyTorch物体检测实战.zip

深度学习之PyTorch物体检测实战

2025-06-02

人工智能-大模型-使开发者能够通过标准化的接口轻松使用多个中国的大型语言模型(LLM)

简单、统一的接口,可连接多个生成式人工智能提供商。 aisuite4cn 针对于中国的各类大模型厂商提供通用的支持。学习了aisuite方案,并开发了该库。 aisuite4cn 使得开发者能够通过标准化的接口轻松使用多个大型语言模型(LLM)。使用类似于OpenAI的接口,aisuite4cn 使得与最受欢迎的LLM互动并比较结果变得简单。它是Python客户端库的轻量级包装器,允许创造者在不改变代码的情况下无缝切换并测试来自不同LLM提供商的响应。我们将在不久的将来扩展它以覆盖更多的用例。 当前支持的提供商包括: Moonshot(月之暗面)、 Doubao(火山引擎方舟大模型服务平台)、 Qwen(阿里云千问大模型)、 Hunyuan(腾讯混元大模型)、 Ernie(百度文心一言)、 ZhipuAI(BigModel智谱AI大模型开放平台)

2025-06-01

基于深度强化学习的原神自动钓鱼AI.zip

基于深度强化学习的原神自动钓鱼AI

2025-06-02

深度学习之PyTorch物体检测实战.zip

深度学习之PyTorch物体检测实战

2025-06-02

基于深度学习的中文语音识别系统.zip

基于深度学习的中文语音识别系统

2025-06-02

基于tensorflow深度学习的中文的命名实体识别.zip

基于tensorflow深度学习的中文的命名实体识别

2025-06-02

基于深度学习的中文语音识别系统.zip

基于深度学习的中文语音识别系统

2025-06-02

人工智能-计算机视觉-这是一个yolov8-pytorch的仓库,可以用于训练自己的数据集

目录 仓库更新 Top News 相关仓库 Related code 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference

2025-06-02

基于深度学习的垃圾分类.zip

基于深度学习的垃圾分类

2025-06-02

人工智能-鸿蒙开发-阅读鸿蒙版仓库

API 阅读3.0 提供了2种方式的API:Web方式和Content Provider方式。您可以在这里根据需要自行调用。 可通过url唤起阅读进行一键导入,url格式: legado://import/{path}?src={url} path类型: bookSource,rssSource,replaceRule,textTocRule,httpTTS,theme,readConfig,dictRule,addToBookshelf path类型解释: 书源,订阅源,替换规则,本地txt小说目录规则,在线朗读引擎,主题,阅读排版,添加到书架

2025-04-28

Origin中【CorrelationPlot】插件资源,下载后直接拖拽到右侧+app处即可安装

Origin中【CorrelationPlot】插件资源,下载后直接拖拽到右侧+app处即可安装 **正文** Origin是一款广泛应用于科学研究和工程领域的数据分析与图形绘制软件。它提供了丰富的功能和工具,使得用户可以方便地处理、分析数据并创建高质量的图表。在Origin中,【CorrelationPlot】插件是一个非常实用的功能,专为探索数据间的相关性而设计。通过这个插件,用户可以轻松地可视化不同变量之间的相关性,从而更好地理解和解释数据模式。 1. **安装与使用CorrelationPlot插件** 插件的安装过程简单快捷,只需将下载后的压缩包文件"CP.opx"解压,然后直接将其拖放到Origin主界面右侧的APP界面中。一旦完成此步骤,该插件将被添加到Origin的应用程序库中。从那以后,每次启动Origin时,无需再次设置,用户可以直接调用CorrelationPlot插件来生成相关性图。 2. **插件功能** - **相关系数计算**:CorrelationPlot插件能够计算两列或多列数据的相关系数,如皮尔逊相关系数、斯皮尔曼等级相关系数或肯德尔秩相关系数等,这些系数反映了变量间线性或非线性的关联程度。 - **可视化相关性**:生成美观且易于理解的相关矩阵图或热力图,颜色深浅表示相关性的强弱,负相关用冷色调,正相关用暖色调,帮助用户直观地识别数据中的趋势。 - **自定义设置**:用户可以根据需求调整图的样式,包括颜色映射、图例位置、网格线、标签等,使图表更符合报告或论文的要求。 - **批量处理**:对于大量的数据集,CorrelationPlot可以批量处理,一次性生成多个变量对的相关性图,节省了用户的时间和精力。 3. **应用场景** - **科研数据分析**:在生物学、化学、物理学等科学研究中,经常需要分析不同实验条件或测量指标

2025-04-16

人工智能-知识图谱-基于领域本体和大语言模型的知识图谱自动化构建工具

基于领域本体和大语言模型的知识图谱自动化构建工具 使用流程: 配置config.py文件(配置LLM API, Neo4j用户名,密码,Embedding PATH,ROOT_TYPE等) 启动neo4j(可视化) 运行KG_generate.py(得到知识图谱) 运行format_kg_for_lightrag.py(得到格式化的JSON字符串) 运行LightRAG_insert_kg.py(对知识图谱进行问答)

2025-04-16

人工智能-大语言模型-基于deepseek 的OCR

DeepSeek OCR 是一个基于Deepseek AI模型的智能文字识别系统,旨在通过图像识别技术提取图像中的文本信息。该项目使用了 DeepSeek API 进行 OCR 处理,支持多种上传方式,包括文件上传和 URL 上传。

2025-02-15

人工智能-大语言模型-基于DeepSeek开发的Intellj Idea插件

如果你是第一次使用这个插件,可以按照以下步骤操作: 1.点击侧边栏的齿轮图标,或者打开 IntelliJ DEA 编辑器的 DeepSeek Coder设置选项。 2.点击申请链接免费获取一个 API KEY,将 API KEY填写到对应位置即可。 3.初始版本目前只支持聊天功能,后续将会开发更多功能。 完成这些步骤后你就可以开始体验 DeepSeek 大模型的强大功能了!

2025-02-15

人工智能-大语言模型-基于200万条医疗数据对deepseek-r1进行微调且简单部署

简介: 本项目是基于200万条医疗数据进行微调,形成一个在医学方面具有极高专业性的可本地部署的大语言模型

2025-02-15

人工智能-法律问答-基于知识图谱的林业法律法规问答

基于知识图谱的林业法律法规问答 Python 调用 nsq 消费者启动方式 启动lookup nsqlookupd 启动一个nsqd , 并指定lookup的地址 nsqd --lookupd-tcp-address=127.0.0.1:4160

2025-01-11

人工智能-迁移学习-基于知识库的问答系统 其中使用带注意力机制的对抗迁移学习做中文命名实体识别,使用BERT模型做句子相似度分析

基于知识库的问答系统。其中使用带注意力机制的对抗迁移学习做中文命名实体识别,使用BERT模型做句子相似度分析 本项目是基于知识库上做问答,首先使用带注意力机制的对抗迁移学习做中文命名实体识别(Cao EMNLP2019),然后再通过别名词典得到近义词,根据这些近义词查询Mysql数据库,得到一些三元组,这些三元组组中包括一些属性。我们先对属性与原问题进行直接字符串匹配进行查询,如不能直接匹配再使用bert做相似度计算进行属性映射,最后进行排序得到结果。整个实验原理参考论文,我把其中的模型进行了替换。

2025-01-01

人工智能-强化学习-基于强化学习的空战对抗

基于强化学习的空战对抗 利用值函数逼近网络设计无人机空战自主决策系统,采用epsilon贪婪策略,三层网络结构。 其中包含了无人机作为质点时的运动模型和动力学模型的建模。 由于无人机作战的动作是连续并且复杂的,本项目仅考虑俯仰角gamma(又叫航倾角)和航向角pusin的变化,并且离散的规定每次变化的幅度为10度,假定速度v为恒定值。根据飞机的运动模型,由俯仰角、航向角和速度可以推算出飞机位置的改变,即x,y,z三个方向的速度分量,在每一步中,根据这些分量变化位置position信息,posintion中的三个值为x,y,z坐标,是东北天坐标系下的坐标值。从坐标信息和角度信息以及速度信息,可以计算出两个飞机的相对作战态势state。 在上文中提到,我们的动作是仅对俯仰角和航向角进行改变,即增大,减少和不变,故两个角度的变化组合一共有3×3=9种动作。在每个态势下,都有9种动作可以选择,将这个态势下的9种动作将会产生的新的态势,作为网络的输入,网络的输出是9个数字,代表每个动作的值函数。 由于是无监督学习,故我们需要利用值函数的Bellman公式生成标签。本文利用时间差分思想,(时间差

2025-01-01

人工智能-对比学习-基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM

基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM 基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM)的训练,使用交叉检验(Cross-validation)对比了各算法的预测准确率。 Algorithms Average prediction accuracy(%) Standard deviation 决策树(Decision tree) 93.3636% 0.043608 朴素贝叶斯(Naive Bayes) 93.2727% 0.062879 随机森林(Random forest) 93.3636% 0.059620 支持向量机SVM 96.1818% 0.046851

2024-12-17

人工智能-鸿蒙开发-使用鸿蒙ARKTS实现番茄钟的开发,基于API9

使用鸿蒙ARKTS实现番茄钟的开发,基于API9

2024-12-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除