60、医学图像分割与剂量规划的创新技术

医学图像分割与剂量规划的创新技术

1. 医学图像分割的现状与挑战

在医学领域,功能成像技术如正电子发射断层扫描(PET)在放射治疗(RT)中的应用日益广泛。准确的肿瘤分割是放射治疗规划的基础步骤,它有助于提取半定量指标,如标准化摄取值(SUVs),这些指标对于制定治疗方案至关重要。然而,手动分割不仅耗时费力,而且由于PET图像的低信噪比和有限空间分辨率,以及专家先验知识的差异,导致分割结果的可重复性较差。

近年来,卷积神经网络(CNNs)在医学图像分割任务中取得了显著成就。它们能够从数据中学习有信息的分层特征,但在识别物体边界时存在困难,因为连续的下采样层会导致信息丢失。此外,CNN生成的像素级分割图可能存在噪声,低损失函数值并不一定意味着有意义的分割结果。

为了解决这些问题,有人提出了基于核平滑的概率轮廓(KsPC)方法。该方法假设真实的SUVs来自一个平滑的潜在空间过程,可以通过核估计进行建模。KsPC能够生成基于轮廓的分割结果,模仿专家的手动分割,但它的性能严重依赖于模型的带宽和阈值调整参数,并且缺乏其他患者的信息。

除了肿瘤分割,PET图像还可用于强度调制放射治疗(IMRT)的剂量规划。剂量规划通过功能图像根据肿瘤的空间辐射敏感性优化剂量处方,以提高肿瘤控制效果。然而,目前迫切需要开发能够准确识别高复发风险轮廓的图像分割方法。

2. 创新模型KsPC - Net的提出

为了应对肿瘤分割和剂量规划的挑战,研究人员提出了一种名为KsPC - Net的新型混合CNN模型。该模型将CNN的表达能力与KsPC的灵活性相结合,通过CNN自动学习参数,利用KsPC同时识别物体边界并提供概率轮廓。

2.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值