- 博客(172)
- 收藏
- 关注

原创 【图像处理基石】如何入门ISP算法开发?
入门ISP(Image Signal Processor,图像信号处理)算法开发需要结合理论学习、实践操作和工程实现能力。,从简单模块入手,逐步构建完整的ISP流水线,并在实际项目中优化和验证算法效果。通过以上步骤,你可以逐步掌握ISP算法开发的核心技能。
2025-05-06 22:54:02
904

原创 【AI产品】Manus,启动!
后面还会继续分享更多的试用体验,也欢迎大家一起加入探索,把这个工具用得更好~如果你有有关AI生产力工具的好点子也可以联系我,我们一起讨论,为社区做出贡献。科学之后就可以注册了。注册后,我先在手机上玩了一把。这样那样,跟之前yxh上写的挺相似的。大概十几分钟后,真的给我产出了一份报告!但是这么几大段就这么一条注释,我也是很费解啊!Try了第一步,就需要科学上网,因为国内呢,是跟千问合作的,现在还不能用。打开了一看,内容还真的很像那么回事的!所以我火速让manus增加了一下注释,出了个新版。
2025-04-12 11:25:39
211

原创 今天全网爆火的Manus到底是什么?Manus的功能与意义深度解析
Manus的爆火既反映了市场对AI Agent的期待,也暴露了技术炒作与真实能力之间的落差。对普通人而言,它是潜在的效率工具;对从业者,则是技术迭代与商业化的试验场。其长远意义在于推动AI从“辅助”走向“执行”,但需警惕过度营销对行业信誉的消耗。,而非仅提供建议或答案。该产品因宣称“知行合一”的能力(如自动生成PPT、分析股票、筛选简历等)迅速引发行业热议,甚至导致官网因流量激增崩溃,邀请码被炒至数万元。注册,但官方强调未开放付费渠道,二手平台的邀请码多为虚假信息。目前Manus处于内测阶段,需。
2025-03-06 20:57:21
4329
1

原创 2025年了,AI算法工程师的校招主要考察哪些内容?
结合大模型时代的技术趋势与计算机视觉(CV)算法岗的校招要求,校招考察要点呈现以下核心特征:编程与算法基础深度学习与CV专业知识项目与实战经验大模型核心技术前沿技术与创新思维工程与落地能力岗位类型差异行业招聘趋势技术准备简历与面试优化行业动态跟踪大模型时代下,CV算法岗校招呈现**“基础能力强化+技术边界扩展”**的双重特征:
2025-03-05 19:15:49
1348

原创 DeepSeek-R1技术革命:用强化学习重塑大语言模型的推理能力
DeepSeek-R1的成功验证了算法创新比算力堆砌更重要的技术哲学。通过GRPO算法与规则奖励系统的精妙设计,团队用1%的成本实现了顶尖性能,这为开源社区提供了可复现的技术范本。随着更多研究者加入这场推理能力的进化竞赛,我们正在见证AGI发展路径的根本性转向——从依赖人类标注的被动学习,走向自主探索的智能涌现时代。
2025-02-09 21:16:50
3027
1
原创 【图像处理入门】3. 几何变换基础:从平移旋转到插值魔法
掌握图像的几何变换相当于学会「图像的空间魔法」。本文将带你理解平移/旋转/缩放的数学原理,掌握OpenCV中warpAffine和的核心用法,对比最近邻、双线性等插值算法的优劣。通过图像翻转、镜像、透视变换实战,学会用变换矩阵控制图像的空间形态,为图像配准、目标检测等高级应用铺路。平移/旋转/缩放通过仿射变换矩阵实现,本质是像素的坐标映射插值算法的选择直接影响变换后的图像质量,双线性插值是平衡之选warpAffine和是处理2D/3D变换的核心函数。
2025-05-31 23:19:03
67
原创 【图像处理入门】2. Python中OpenCV与Matplotlib的图像操作指南
通过掌握这些基础操作,您将为后续的图像处理学习打下坚实基础。建议通过实际项目(如证件照背景替换、图像特效制作)加深理解。
2025-05-31 23:14:07
199
原创 【AI算法工程师面试指北】Transformer与CNN有什么异同点?
Transformer 和 CNN(卷积神经网络)是深度学习中两种重要的架构,分别在自然语言处理(NLP)和计算机视觉(CV)领域取得了突破性成果。它们既有相似之处,也有显著差异。(如多层卷积层、多层Transformer层),通过加深网络提升复杂特征的表达能力。,通过多层非线性变换捕捉数据中的层次化特征(如低层的边缘、纹理,高层的语义概念)。均依赖大规模数据训练,通过反向传播优化参数,适用于处理高维数据(如图像、文本)。
2025-05-30 23:13:34
576
原创 【图像处理基石】如何进行图像畸变校正?
图像畸变校正常用于计算机视觉、摄影测量学和机器人导航等领域,能够修正因镜头光学特性或传感器排列问题导致的图像失真。下面我将介绍几种常用的图像畸变校正算法,并提供Python实现和测试用例。
2025-05-30 23:10:03
524
原创 【深度学习新浪潮】什么是混合精度分解?
混合精度分解通过“分解-量化-协同”的技术路径,在大模型压缩中实现了精度与效率的双赢。其核心优势在于按需分配精度资源,既避免了全低精度量化的性能损失,又突破了全高精度的资源限制。随着硬件支持的完善(如FP8、INT4 Tensor Core)和算法优化的深入,混合精度分解有望成为大模型端侧部署的标配技术,推动人工智能从云到端的全面普及。
2025-05-29 21:52:41
105
原创 【图像处理基石】立体匹配的经典算法有哪些?
这些算法奠定了立体匹配的理论基础,后续深度学习方法(如GC-Net、PSMNet)多基于经典算法的约束条件(如视差连续性)进行改进。下面是一个基于OpenCV的Python实现,展示了如何使用SIFT特征和RANSAC算法进行立体匹配并计算视差图。先提取图像中的显著特征(如角点、边缘),再对特征点进行匹配,减少计算量但依赖特征质量。利用图像的相位信息(而非幅值)进行匹配,对噪声和光照不敏感,但需多尺度分析。通过构建能量函数并全局优化(如最小化视差不连续代价),获取更平滑的视差图。
2025-05-29 21:44:21
1322
原创 【AI算法工程师面试指北】大模型微调中的灾难性遗忘该如何避免?
在大模型微调(Fine-tuning)过程中,**灾难性遗忘(Catastrophic Forgetting)**是一个关键挑战,尤其当模型需要在保留预训练阶段所学通用知识的同时,适应新任务或领域时。对于数十亿到数千亿参数的大模型,这种更新方式风险极高——即使是微小的参数变化,也可能通过深层网络的传播效应,对全局知识产生连锁破坏。微调时,若对参数进行大范围更新,可能会“覆盖”或“破坏”旧知识的存储,导致模型“遗忘”原始能力。当模型在微调(学习新任务)时,过度修改了预训练阶段学到的核心知识,导致其在。
2025-05-28 15:10:21
592
原创 【AI算法工程师面试指北】小球检测问题
使用简单的CNN模型直接预测圆形的位置和半径。该方法需要大量标注数据进行训练才能达到良好效果,示例中使用的是随机初始化的模型,实际应用中应使用预训练模型。它基于圆的参数方程,在参数空间中寻找峰值点来确定圆的位置和半径。小球检测(或圆形物体检测)在多个领域有实际应用,具体场景和技术需求因领域而异。根据具体场景的需求(精度、速度、成本),可以灵活组合传统方法和深度学习,实现高效的小球检测方案。设计算法检测出圆球,给出图中的坐标。使用时,你可以根据具体场景选择合适的检测方法,并调整相应参数以获得最佳效果。
2025-05-28 15:01:36
1193
原创 【深度学习新浪潮】智能眼镜关键技术拆解(简要版)
硬件性能逼近人眼极限(如Micro LED+光波导组合实现60PPD)和交互体验趋向自然无感(如脑机接口+无手柄交互)。当前行业正处于技术成熟期(Gartner曲线的“高原期”),核心挑战从单点突破转向系统级优化——需在显示、光学、算力、能源等维度实现性能-功耗-成本的三角平衡。未来3年,随着5nm SoC量产(如苹果A18X)、硅碳电池普及(能量密度>800Wh/L)和光波导良率提升(>95%),消费级智能眼镜有望突破2000元价格门槛,进入大众市场。
2025-05-27 11:45:08
209
原创 【深度学习新浪潮】以图搜地点是如何实现的?(含大模型方案)
下面是一个使用Python实现照片位置识别功能的方案,包含基于传统计算机视觉和深度学习的方法,以及结合大模型的方案。对于大模型方案,还需要设置有效的OpenAI API密钥。使用这些代码时,你需要安装相关的依赖库,如。
2025-05-27 11:39:59
206
原创 【图像处理基石】什么是色彩模式?
显示的色彩模式是指用数学方法和不同颜色通道组合来表示颜色的规则体系,不同模式适用于不同的显示设备、设计场景或输出需求。1.1 常见色彩模式解析1. RGB模式(加色模式)原理:通过红(Red)、绿(Green)、蓝(Blue)三原色光的叠加来混合出各种颜色,每种颜色通道取值范围通常为0-255(8位色)。特点加色模式:三原色光叠加越接近白色(如R=255+G=255+B=255=白色)。色域范围。
2025-05-26 12:04:56
1002
原创 【Python与生活】CPI是什么?
CPI(Consumer Price Index,消费者价格指数)是衡量一组代表性消费品及服务项目价格水平随时间变动的相对数,反映居民家庭购买消费商品及服务的价格水平的变动情况。使用时,你可以根据实际需求修改商品篮子、价格数据或添加更多功能,如季节性调整、权重更新等高级CPI计算方法。
2025-05-26 11:56:22
742
原创 【深度学习新浪潮】如何用Dify构建自己的AI Agent?
该Agent支持多时间线叙事生成(如1920年上海滩、2077年赛博都市等),通过“时间锚点”将不同时空的剧情隐秘关联,生成跨时空交织的故事网络。用户上传表格并选择图表类型(如柱状图、雷达图),Agent自动解析数据结构,生成包含Chart.js库的HTML代码,并通过第三方存储服务返回可直接运行的可视化链接。例如,学生在开发图书借阅系统时,只需输入需求,Agent即可生成包含注释和测试用例的Python代码,并提供代码优化建议。在构建过程中,要不断进行测试和优化,以提升Agent的性能和用户体验。
2025-05-24 22:05:10
207
原创 【深度学习新浪潮】什么是MCP?
MCP(Model Context Protocol,模型上下文协议)是由Anthropic于2024年11月开源的标准化协议,旨在统一AI模型与外部工具、数据源的交互方式,解决传统集成中的碎片化问题。其核心设计类似于USB-C接口,通过客户端-服务器架构(Host/Client/Server)实现模型与外部资源的“即插即用”,使AI应用能够高效调用数据库、API、文件系统等资源,同时支持动态上下文传递和多模型协作。MCP为AI开发者提供了标准化的协作框架,显著降低了多模型集成和外部资源调用的复杂度。
2025-05-24 21:56:17
269
原创 【复杂网络分析】社区发现(Community Detection)算法简介
社区发现(Community Detection)是复杂网络分析的核心任务之一,旨在将网络划分为内部连接紧密、外部连接稀疏的子结构(社区)。以下介绍5种经典算法的原理、流程,并提供Python实现示例(基于常用库)。
2025-05-23 15:56:51
1404
原创 【ISP算法精粹】ISP算法管线的预处理算法有哪些?
实际应用中,需根据传感器特性、场景需求和硬件资源,选择合适的算法组合,并通过标定(Calibration)和自适应机制(如自动黑电平更新)提升鲁棒性。在图像信号处理(ISP)流程中,预处理阶段主要针对图像传感器(如CMOS/CCD)输出的原始图像数据(通常为拜耳格式的RAW图像)进行初步处理,以校正硬件缺陷、去除噪声并为后续处理(如去马赛克、色彩校正等)奠定基础。以下是一个基于Python实现的ISP预处理流程,包含了坏点校正、黑电平校正、镜头阴影校正和降噪等核心算法,并附带测试用例。
2025-05-23 15:46:40
256
原创 【深度学习新浪潮】2025年谷歌I/O开发者大会keynote观察
这是谷歌搜索的一项新功能,通过集成Gemini模型,用户可输入多段式复杂问题(例如“帮我分析最近3个月的股市趋势,并对比不同行业的表现”),系统会自动调用实时数据与历史信息生成结构化答案,甚至支持体育赛事预测、金融数据分析等专业场景。框架,允许开发者构建“多屏应用”(如手机App可无缝切换到平板或智能手表),并通过Gemini Nano的本地AI模型实现跨设备任务同步(例如在手机上开始编辑文档,切换到PC时自动续接进度)。同时,蓝牙追踪精度提升至0.5米,并支持“远程锁定+数据擦除”一键操作。
2025-05-22 15:13:26
468
原创 【图像处理入门】1. 数字图像的本质:从像素到色彩模型
图像是离散化的像素矩阵,分辨率和位深度决定了图像的 “先天素质”灰度图像是单通道的亮度矩阵,彩色图像通过不同色彩模型编码颜色信息OpenCV 的imread和imshow是探索图像本质的显微镜,Matplotlib 则是观察图像的望远镜下一篇我们将深入图像的基本操作,学会用代码对像素矩阵进行 “外科手术”—— 裁剪、缩放、通道操作。现在请打开你的 IDE,用开启属于你的图像处理之旅吧!思考:为什么相机拍摄的 JPEG 图像在 PS 中打开和用 OpenCV 读取的颜色可能不同?
2025-05-22 11:13:09
374
原创 【ISP算法精粹】什么是global tone mapping和local tone mapping?
全局色调映射(Global Tone Mapping)和局部色调映射(Local Tone Mapping)是高动态范围(HDR)图像处理中的两种关键技术,用于将高动态范围图像的亮度值映射到标准动态范围(LDR)内,同时保留图像的细节和视觉质量。方法核心优势适用场景视网膜感知模型符合人眼视觉特性,保色性好人像、风景照片直方图优化增强局部对比度医学影像、监控视频梯度域处理精确控制细节保留高动态范围场景深度学习自适应学习最优映射复杂场景、高质量需求混合方法平衡效率与效果。
2025-05-20 19:53:24
570
原创 【芯片开发】芯片开发流程中的基线是什么?
基线是芯片开发中“分阶段稳定、分阶段推进”的核心机制,通过对设计成果的标准化管理,平衡了开发效率与质量控制的需求,是复杂芯片项目成功的关键要素之一。它是后续开发工作的基准和起点,用于控制变更、确保团队协作的一致性,并为项目管理提供可追溯的里程碑。例如:通过频繁的小版本基线(如每周冻结一次验证通过的代码),替代传统的大阶段基线,提高开发效率。在敏捷开发模式中,基线的概念可能更灵活,强调“持续集成”和“快速迭代”,但核心思想不变——
2025-05-20 11:04:40
262
原创 【深度学习新浪潮】什么是多模态大模型?
多模态大模型是AI从“单一能力”迈向“通用智能”的重要一步,它让机器具备更接近人类的感知和认知能力,有望重塑人机交互、内容生产、行业效率等多个领域。简单来说,这类模型就像人类一样,能同时“看”“听”“读”“说”,并将不同信息关联起来,完成复杂任务。基于Transformer等深度学习架构,参数规模通常达数十亿至数千亿,通过海量跨模态数据(如图文对、视频文本对)训练,学习不同模态的统一表征。传统模型通常只能处理单一模态(如纯文本的GPT、纯图像的CNN),而多模态大模型可以同时接收并分析多种类型的数据。
2025-05-19 22:29:02
306
原创 【深度学习新浪潮】如何入门人工智能?
入门人工智能(AI)需要结合数学基础、编程技能、机器学习理论和实践项目,逐步深入。:AI入门有门槛,但通过“理论→实践→复盘”的循环,逐步积累即可。初期遇到问题很正常,多查资料、多交流,保持耐心!:全职学习约3-6个月可掌握基础并完成简单项目,后续需持续实践和跟进领域进展。:不必追求精通,但需掌握基本概念和应用场景,后续通过实践加深理解。
2025-05-19 22:24:13
180
原创 【图像处理基石】OpenCV中都有哪些图像增强的工具?
亮度与对比度调整线性变换(亮度/对比度调整)直方图均衡化自适应直方图均衡化(CLAHE)滤波与平滑高斯滤波中值滤波双边滤波锐化与边缘增强拉普拉斯算子高通滤波非锐化掩蔽(Unsharp Masking)色彩空间变换灰度转换HSV色彩调整颜色平衡高级增强技术伽马校正对数变换幂律变换工具类型优点缺点适用场景线性变换简单高效,直接调整亮度对比度参数选择依赖经验,可能导致信息丢失快速调整基础对比度直方图均衡化全局增强对比度,无需参数。
2025-05-18 23:51:07
667
1
原创 【深度学习新浪潮】大模型在哪些垂域已经有比较好的落地?
AI大模型的落地已从通用场景向专业领域深度渗透,尤其在医疗、金融、教育等领域形成规模化应用。未来,随着分布式大模型智能体系统(如思必驰“1+N”模式)的成熟,以及区域化垂类模型的持续迭代,AI将进一步推动各行业从效率提升向模式创新演进。
2025-05-18 23:44:55
240
原创 【AI算法工程师面试指北】ResNet为什么用avgpool结构?
ResNet末尾的平均池化结构是轻量化、泛化性、训练稳定性的综合考量:它通过聚合全局特征减少参数,增强对平移的鲁棒性,并借助经典设计经验(如NIN)提升深层网络的训练效率。这一设计不仅成为ResNet的标志性特征,也被后续主流网络(如EfficientNet等)广泛借鉴,成为现代CNN的标准组件之一。
2025-05-17 21:32:31
1147
原创 【AI算法工程师必知必会】如何入门数值计算?
通过以上步骤,你将逐步建立从理论到实践的完整能力,最终能够用数值计算解决实际问题。坚持每周投入一定时间练习(如完成1个小项目或算法实现),进步会非常明显!
2025-05-17 21:26:30
806
原创 【深度学习新浪潮】大模型时代,我们还需要学习传统机器学习么?
大模型时代,传统机器学习并非过时,而是与深度学习形成互补。AI工程师需以“传统筑基、大模型创新”为策略:先通过数学和经典算法构建扎实基础,再通过工具和项目实践掌握两者结合的技巧,最终在行业应用中实现技术落地。这一路径不仅能提升职业竞争力,更能为解决实际问题提供更全面的技术方案。正如混合模型在智能客服和医疗领域的成功所示,传统与现代技术的融合将成为未来AI发展的主流方向。
2025-05-17 21:21:54
286
原创 【复杂网络分析】如何入门复杂网络技术?
入门复杂网络技术需要从基础理论、工具技能和实践应用三个维度逐步推进。复杂网络与机器学习、物理、生物等领域交叉活跃,需持续关注动态。复杂网络涉及多学科交叉,扎实的基础能帮助理解核心原理。从经典模型到前沿方向,逐步构建知识框架。通过实践巩固理论,积累项目经验。
2025-05-16 10:50:21
664
原创 【图像处理基石】什么是油画感?
在图像处理中,“油画感”通常指图像呈现出类似油画的块状纹理、笔触痕迹或色彩过渡不自然的现象,表现为细节模糊、边缘不锐利、颜色断层或人工纹理明显。这种问题常见于照片处理、视频帧截图或压缩后的图像,本质是画质受损的一种表现。油画感的核心问题是“细节损失”与“人工纹理干扰”,解决时需根据具体原因(压缩、降噪、锐化等)针对性调整。若为视频中的油画感,需结合帧插值、去块滤镜(如FFmpeg的。)或专业视频修复软件(如DAIN、Topaz Video Enhance)处理。
2025-05-13 22:53:30
795
原创 【AI算法工程师必知必会】如何入门大模型微调?
通过以上步骤,可系统性掌握大模型微调核心技术。建议从LoRA等轻量级方法入手,结合公开数据集(如IMDb情感分类、金融领域问答)进行实战,逐步过渡到复杂场景。关注Hugging Face、Meta AI等平台的最新工具更新,保持技术迭代意识。理解Transformer架构、注意力机制等核心原理(参考经典论文《Attention Is All You Need》)。预训练模型的核心优势在于迁移学习能力,通过少量领域数据微调即可显著提升特定任务表现,兼具数据高效性与泛化能力。
2025-05-13 19:05:46
535
原创 【AI算法工程师必知必会】如何入门AI模型量化?
入门模型量化的核心是“理论驱动实践”:先掌握量化的数学原理和工具链,再通过具体模型(从简单到复杂)的量化实验积累经验,最后结合硬件特性和业务需求优化方案。初期可聚焦PTQ(流程简单,适合快速验证),遇到精度瓶颈时再深入QAT和硬件优化。随着边缘AI和高效推理的需求增长,量化能力将成为模型部署的核心技能之一。
2025-05-13 19:00:23
1163
原创 【Python生活】如何构建一个跌倒检测的算法?
Kivy和BeeWare是最直接的方法,因为它们允许你直接使用Python代码,而不需要转换为其他语言。你可以通过运行这个Python文件来执行测试,测试通过后会生成模拟数据并进行跌倒检测,最后可视化展示结果。跌倒检测主要基于加速度计和陀螺仪数据,通过分析人体运动的特征来判断是否发生跌倒。:提取时域特征(均值、标准差、峰度等)和频域特征(FFT变换),训练分类模型(如SVM、随机森林)。:设置加速度幅值阈值和倾角阈值,当加速度突然增大并超过阈值,随后倾角发生显著变化时,判定为跌倒。
2025-05-13 15:27:18
675
机器学习与模式识别领域的PRML习题解析手册
2025-03-10
在TensorFlow中将预训练好的模型转换成tflite格式模型的python代码实现
2025-03-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人