一、推理模型与GPT模型的定义
1. 推理模型(Reasoning Model)
- 定义:
推理模型通常指专门用于处理逻辑推理、因果推断、数学计算或常识推理任务的模型。这类模型可以是基于符号逻辑(如专家系统)、概率图模型(如贝叶斯网络),或是结合深度学习的混合模型(如神经符号系统)。 - 典型任务:
数学题求解(如“3+5=?”)、逻辑谜题(如数独)、因果推理(如“如果下雨,地面会湿吗?”)等。
2. GPT模型(Generative Pre-trained Transformer)
- 定义:
GPT是由OpenAI开发的生成式预训练语言模型,基于Transformer架构。它通过自监督学习在海量文本数据上训练,能够生成连贯的自然语言文本,并支持问答、翻译、摘要生成等任务。 - 核心特点:
自回归生成(逐词预测)、大规模参数量、上下文理解能力、零样本/少样本学习能力。 <