论文:InstructRestore: Region-Customized Image Restoration with Human Instructions
Arxiv: https://arxiv.org/abs/2503.24357
一段话总结
本文提出InstructRestore框架,用于实现基于人类指令的区域定制化图像恢复。针对现有方法缺乏区域定制恢复能力的问题,开发数据生成引擎构建536,945个三元组的数据集,设计类似ControlNet的模型。该模型能识别目标区域并分配不同整合尺度,实验表明InstructRestore可有效按指令恢复图像,如实现背景虚化和局部增强效果,但存在实例级对象指定支持不足、指令模板固定等局限。
详细总结
- 研究背景:图像恢复是计算机视觉的基础问题,基于深度学习的判别式模型和生成对抗网络模型存在过度平滑或引入视觉伪影的问题。基于预训练文本到图像生成模型(如Stable Diffusion)的方法虽能合成逼真细节,但现有方法在整个图像上进行统一恢复,无法根据用户指令调整不同区域的恢复程度。
- 相关工作