多分类(softmax处理iris数据集)

本文介绍了如何利用Softmax函数处理Iris数据集进行多分类任务。通过详述数据预处理、模型构建、训练过程和结果评估,展示了Softmax在多类别分类中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# -*- coding: utf-8 -*-


# @Time    : 2018/12/14 10:08
# @Author  : WenZhao
# @Email   : [email protected]
# @File    : iris.py
# @Software: PyCharm


'''
    区分花(多分类):softmax回归
'''

import requests
import numpy as np
import pandas as pd
import tensorflow as tf
# 数据预处理
r=requests.get('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data')

with open('./data/iris.data','w') as f:
    f.write(r.text)

data=pd.read_csv('./data/iris.data',names=['e_cd','e_kd','b_cd','b_kd','cat'])
# 独热编号
data['c1']=np.array(data['cat']=='Iris-setosa').astype(np.float32)
data['c2']=np.array(data['cat']=='Iris-versicolor').astype(np.float32)
data['c3']=np.array(data['cat']=='Iris-virginica').astype(np.float32)
del data['cat']

# 合并行
target=np.stack([data.c1.values,data.c2.values,data.c3.values]).T
shuju=np.stack([data.e_cd.values,data.e_kd.values,data.b_cd.values,data.b_kd.values]).T
print(target.shape,shuju.shape)

# 定义网络

x=tf.placeholder("fl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

葡萄皮Apple

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值