自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 DeepSeek+Dify构建智能体和知识库章节导航

Dify平台私有化部署与AI应用开发指南 本文介绍了Dify平台的私有化部署方法及AI应用开发实践。首先详解Dify平台的本地化部署流程,包括Docker容器化、环境配置等关键技术。随后重点探讨基于DeepSeek模型的对话应用开发、智能体架构设计、工作流自动化实现等核心内容,涵盖Prompt工程、多轮对话、意图识别等关键技术点。最后深入讲解企业级知识库系统的搭建方法,包括数据向量化、RAG技术应用等。通过实际案例展示了AI在客服机器人、智能助手、业务流程自动化等场景的应用方案,为企业构建AI系统提供全面指

2025-07-05 10:49:49 115

原创 1-8 Dify平台整合Ollama与Xinference模型:构建高效智能推理服务

本文详细介绍了如何将Ollama大语言模型和Xinference推理平台整合到Dify开发平台。Dify作为LLM应用开发平台,通过环境变量配置对接Ollama/Xinference的API接口。Ollama提供轻量级对话模型本地部署,Xinference支持分布式推理和多模态模型。文章分步骤演示了在Dify中接入Ollama和Xinference的具体流程,包括模型测试、参数配置和网络验证等关键环节,实现高效智能的模型推理服务构建。最终完成两类模型的成功接入,为AI应用开发提供全栈能力支持。

2025-07-09 12:10:18 455

原创 1-7 Ollama与Xinference核心功能差异对比:架构设计与应用场景综合分析

本文深入对比分析了Ollama与Xinference两大工具的核心功能差异,从架构设计到应用场景进行了全面剖析。文章首先阐述了两者在目标用户、设计理念和硬件适配方面的定位差异,随后详细对比了模型支持能力、部署与扩展性、API与开发生态以及多模态与高级功能等方面的特点。通过具体场景的选择建议,文章进一步揭示了Ollama作为轻量级实验工具与Xinference作为企业级推理平台的互补性。最后,文章总结了两者在技术栈和生态扩展能力上的本质差异,并为个人开发者、教育场景以及企业生产系统提供了针对性的决策建议。

2025-07-08 10:56:48 786

原创 1-6 Dify本地私有化部署—Xinference部署和模型启动

本文介绍了Xinference分布式推理框架的介绍、准备工作、镜像和单机部署、模型部署方法等方面。Xinference是一款性能强大且功能全面的分布式推理框架,专门为大规模模型推理任务设计。它通过简化模型部署流程和优化推理性能,帮助开发者在个人电脑或分布式集群中高效运行各类AI模型。文章还提供了详细的部署步骤和模型部署方法,包括使用Docker Hub拉取镜像、挂载模型目录、访问Web UI、使用UI操作启动模型等。此外,还介绍了启动模型的命令行方法,以及通过API动态加载模型的方法。

2025-07-07 15:53:49 930

原创 1-5 Dify本地私有化部署—Ollama部署

摘要:Ollama是一款开源大语言模型本地化部署平台,支持1700+预训练模型的离线运行。安装时默认路径为C盘,可通过配置OLLAMA_MODELS环境变量修改模型存储位置,设置OLLAMA_HOST为0.0.0.0开放局域网访问。核心操作包括:ollama run运行模型(首次自动下载)、ollama list查看已安装模型、ollama rm删除模型。默认服务端口11434,可通过Web界面交互。该平台简化了私有化模型部署流程,支持多模型管理和命令行操作。(149字)

2025-07-06 19:48:29 933

原创 1-4 Dify本地私有化部署—Dify部署

Dify本地部署简明教程:1)从GitHub下载源码并解压;2)修改docker目录下的.env文件,将端口改为8890;3)通过docker-compose启动服务;4)浏览器访问localhost:8890完成初始设置。整个部署过程约需十几分钟,首次使用需创建管理员账号。

2025-07-06 17:13:01 355

原创 1-3 Windows Docker Desktop安装与设置docker实现容器GPU加速

本文介绍了在Windows 10/11系统上部署Docker环境的完整流程。首先需要启用虚拟化技术(WSL 2和Hyper-V),通过PowerShell命令配置WSL 2并更新内核。安装过程中需特别注意Hyper-V虚拟化技术的开启方法,包括BIOS设置和Windows功能启用。Docker安装完成后,建议修改默认镜像存储位置以节省C盘空间。最后配置了多个国内镜像加速地址,并通过docker info命令验证安装成功。整个流程包含详细的命令行操作和图示说明,适合Windows用户快速搭建Docker开发环

2025-07-06 11:26:53 792

原创 1-2 Dify平台介绍

Dify是一款开源的大语言模型(LLM)应用开发平台,提供从模型训练到部署的全流程工具。其核心功能包括多模型支持、可视化Prompt编排、RAG引擎、智能代理框架等,简化了传统LLM开发中的数据准备、Prompt工程等复杂环节。平台支持企业级应用场景,提供实时监控、性能优化等功能,降低技术门槛,使非技术人员也能参与开发。Dify通过标准化解决方案,解决了LLM开发中效率低、扩展难等问题,显著提升了开发效率和模型效果。

2025-07-05 10:03:27 934

原创 1-1 DeepSeek、Dify、Ollama与Xinference入门简介

本文介绍了DeepSeek、Dify、Ollama和Xinference等工具的功能与应用场景,并通过构建智能客服系统的实际案例,展示了这些技术在提升客户体验、降低人工成本和提高响应速度方面的具体应用

2025-07-05 00:10:24 289

Java后端开发+SpringBoot Redis+缓存配置+Spring Cache注解集成

**内容概要**: 通过详细配置Spring Boot整合Redis并使用Spring Cache缓存注解,了解如何在Spring Boot应用中高效利用Redis进行缓存管理。配置涵盖了Redis连接、缓存序列化、缓存键生成策略等核心方面。 **适合人群**: 具备一定Spring Boot和Redis使用基础的研发人员,希望深入了解如何在Spring Boot项目中整合Redis并进行高效缓存管理。 **能学到什么**: ①如何在Spring Boot中配置Redis作为缓存存储; ②Redis缓存的序列化与反序列化配置; ③自定义缓存键生成策略; ④Spring Cache注解的使用与配置。 **阅读建议**: 此资源专注于Spring Boot整合Redis并使用Spring Cache的配置实践,不仅包含代码实现,也注重理解配置背后的原理和最佳实践。建议在学习过程中结合理论知识与实践操作,深入理解和调试对应的代码。

2025-07-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除