1-3 Windows Docker Desktop安装与设置docker实现容器GPU加速

一、部署 Docker 环境

1. 查看操作环境
  • 操作系统: Windows 10/11(专业版或企业版)
  • 支持版本: 支持 Windows 10 和 Windows 11,具体安装步骤请参考官方文档。
2. 下载 Windows 版本软件
3. 开始安装 Docker 软件包
3.0 启用虚拟化技术
  1. 开启 Windows 功能

    • 搜索“启用或关闭Windows功能”,勾选:
      • ✔️ 适用于Linux的Windows子系统
      • ✔️ 虚拟机平台
  2. 配置 WSL 2

    • 打开 PowerShell(以管理员身份运行),执行以下命令:

      wsl --install -d Ubuntu  # 安装 Linux 发行版
      wsl --set-default-version 2  # 设为默认版本
      wsl --update  # 更新内核
      
      # 如果更新失败,尝试如下命令
      dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
      dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
      
  3. 重启系统

    • 重启计算机以使更改生效。
  4. 检查wsl是否安装成功

    打开命令提示符(CMD)或PowerShell,然后输入以下命令:

    $ wsl --list --verbose
    
    C:\Users\Administrator>wsl --list --verbose
      NAME              STATE           VERSION
    * Ubuntu            Running         2
    
    # 检查正在运行的 WSL 版本
    $ wsl -v -l
    

    这个命令会列出所有已安装的Linux发行版及其状态。如果看到列出的Linux发行版,说明WSL已成功安装。

3.1 开启 Windows 的 Hyper-V 虚拟化技术
  • 在使用 Docker 时,需要开启 Hyper-V 虚拟化技术。如果您的计算机不支持 Hyper-V 或者没有启用 Hyper-V,则会出现 Windows 无法启动 Docker 的问题。

  • 如果遇到 Hyper-V 虚拟机监控程序被禁用的问题,请参考以下步骤:

    在Windows专业版(如Windows10、Windows11),Hyper-V管理器中,“Hyper-V平台”子目录“Hyper-V虚拟机监控程序”为灰色,无法选中。以华硕B85M-GAMER主板为例,要解决Hyper-V虚拟机监控程序被禁用问题,可以按如下步骤操作:
    
    一、CMOS设置里语言为“English”状态下:
    
    1、重启计算机,开机瞬间按键盘“F2”键进入CMOS设置;
    
    2、接着按键盘“F7”键,进入“Advanced Mode”,接着找到“Advanced”选项;
    
    3、然后点击“CPU Configuration”,右边白色竖条往下拉,找到“Intel Virtualization”,把“Disabled”改为“Enabled”。
    
    4、接着按键盘“→”直到找到“Exit”选项,选择“Save Changes & Reset”,在弹出的对话框中,回车键。电脑重启后设置完成。
    
    二、CMOS设置里语言为“中文”状态下:
    
    1、重启计算机,开机瞬间按键盘“F2”键进入CMOS设置;
    
    2、接着按键盘“F7”键,进入“Advanced Mode”,接着找到“高级”选项;
    
    3、然后点击“CPU 设置”,右边白色竖条往下拉,找到“Intel 虚拟技术”,把“关闭”改为“开启”。
    
    4、接着按键盘“→”直到找到“退出”选项,选择“保存变更并重新设置””,在弹出的对话框中,回车键。电脑重启后设置完成。
    
  • 搜索“启用或关闭Windows功能”,勾选:Hyper-V 虚拟化技术。
    在这里插入图片描述

    在cmd窗口中执行如下命令:(以管理员身份运行,将hyper-Visor设置为开机自启动)

    bcdedit /set hypervisorlaunchtype auto
    

    重启系统完成配置。

3.2 运行 Docker 安装包
  1. 双击运行下载好的软件包:

    • 点击“是”,开始安装。
  2. 配置 Docker 软件包

    • 第一个勾选不能取消,默认选中,点击“OK”。
    • 注意:采用 Docker 安装 Dify、Xinference 都需要 WSL,勾选不能取消,默认选中即可。
      在这里插入图片描述
  3. 等待解压完成:

    • 等待安装包解压完成。
      在这里插入图片描述

    安装成功

    • 点击“Close and restart”,会自动重启操作系统。
    • 重启后默认打开 Docker 订阅服务协议,点击“Accept”即可。

在这里插入图片描述
在这里插入图片描述

如上图所示,说明我们docker环境已经安装成功啦。点击"Finish"即可。

更改默认的磁盘镜像存储位置:

  • 设置 → Resources → Advanced → 修改 Disk image location(避免占用 C 盘)。
  • 新建一个目录,如:D:\docker-images-data,将磁盘镜像存储位置改为新建的目录下。

二、配置 Docker 镜像加速

1. 登录 Docker Hub 账号
  • 选择先不登录,直接忽略。

在这里插入图片描述

2.设置 Docker 的用途
  • 如上图所示,我们可以设置 Docker 的用途。
    在这里插入图片描述
3. 等待 Docker 服务启动
  • 进入 Docker 环境后,可能会出现提示信息,等待后再登录即可。
    在这里插入图片描述

进入docker环境后,可能会出现如上图所示的提示信息,我们等待后再登录即可。

4. 配置docker镜像加速

在这里插入图片描述

  • 配置镜像加速地址:

    {
      "registry-mirrors":[
        "https://9cpn8tt6.mirror.aliyuncs.com",
        "https://docker.1panel.live",
        "https://2a6bf1988cb6428c877f723ec7530dbc.mirror.swr.myhuaweicloud.com",
        "https://docker.m.daocloud.io",
        "https://dockercf.jsdelivr.fyi",
        "https://docker.jsdelivr.fyi",
        "https://dockertest.jsdelivr.fyi",
        "https://docker.nju.edu.cn",
        "https://docker.mirrors.sjtug.sjtu.edu.cn",
        "https://mirror.iscas.ac.cn"
        ]
    
    }
    

重启 Docker 服务。

5. 检查docker是否安装成功
  • 打开 PowerShell,输入以下命令检查是否生效:

    $ docker info
    $ docker search nginx
    NAME                                     DESCRIPTION                                      STARS     OFFICIAL
    nginx                                    Official build of Nginx.                         20880     [OK]
    nginx/nginx-ingress                      NGINX and  NGINX Plus Ingress Controllers fo…   108
    nginx/nginx-prometheus-exporter          NGINX Prometheus Exporter for NGINX and NGIN…   51
    # 查看本地镜像
    $ docker images
    

三、设置docker实现容器GPU加速

1. 环境准备
  • 系统要求:
    • Windows 10/11(64位专业版或企业版),家庭版不支持。
    • 硬件显卡支持 GPU,如 NVIDIA 显卡,Windows 系统安装时自动安装 NVIDIA显卡驱动。
2. 启用 Hyper-V 和 WSL 2

启用 Hyper-V 和 WSL 2查看上面操作步骤。

3. 运行nvidia-smi

通过命令提示符输入nvidia-smi,若显示GPU信息(如型号、显存等),则表示支持。若提示命令无效,需检查驱动安装路径是否被添加到系统环境变量。 ‌

  • CMD 检查 GPU 识别:

    nvidia-smi  # 主机端运行,确认驱动正常
    

    输入如下信息表示 NVIDIA 显卡安装成功:

    +-----------------------------------------------------------------------------------------+
    | NVIDIA-SMI 561.19                 Driver Version: 561.19         CUDA Version: 12.6     |
    
  • 软件要求:

    • Docker Desktop 最新版(启用 WSL 2 后端)。
    • 无需在 WSL 2 内单独安装 NVIDIA 驱动或 CUDA。
4. Docker配置 GPU
  1. 更新 Docker Desktop 设置:

    • 打开 Docker 设置 → Resources → WSL Integration → 启用 Ubuntu 实例。
  2. 配置 Docker实现GPU加速:

    • 进入 Docker 设置 → Docker Engine,添加以下配置:

      {
        "experimental": true,
        "features": {
          "buildkit": true
        },
        "registry-mirrors": ["https://registry.docker-cn.com"]  // 可选镜像加速
      }
      
    • 保存并重启 Docker。

5. 验证 GPU 加速
  • 运行测试容器:

    $ docker run --rm -it --gpus=all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark
    
    NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
    
    > Windowed mode
    > Simulation data stored in video memory
    > Single precision floating point simulation
    > 1 Devices used for simulation
    GPU Device 0: "Pascal" with compute capability 6.1
    
    > Compute 6.1 CUDA device: [NVIDIA GeForce MX250]
    3072 bodies, total time for 10 iterations: 2.510 ms
    = 37.601 billion interactions per second
    = 752.020 single-precision GFLOP/s at 20 flops per interaction
    
  • 成功输出应包含 GPU 型号及性能指标(如136.219 billion interactions per second

  • 实际应用测试(可选)

    $ docker run -d --gpus=all -p 11434:11434 --name ollama ollama/ollama  # 运行Llama2模型测试
    $ docker ps
    CONTAINER ID   IMAGE           COMMAND               CREATED         STATUS         NAMES                
    22b3a7b786ad   ollama/ollama   "/bin/ollama serve"   3 seconds ago   Up 2 seconds   ollama
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值