支持向量机(SVM)——线性模型

本文介绍了支持向量机(SVM)如何解决线性可分问题,通过定义线性可分的概念并利用最大间隔原理寻找最优分类超平面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

支持向量机(SVM)可以解决二分类的非线性问题。首先我们可以通过学习支持向量机(SVM)如何解决线性可分的问题来逐步了解SVM。

首先,让我们来了解一下什么是线性可分,什么是线性不可分。

                    

对比两图,我们可以给出一个粗略的定义。如果能够找到一条直线将两个类分开,我们就称这是线性可分的,反之,可得什么是线性不可分。严格数学定义将在之后给出。

在图中的三条直线,哪条是更好的呢,或者说有更好的性能。

观察直线1,如果图示中标红的圈因为特征测量出现误差,出现在了直线1的上方(即红虚线所画的圈),但实际上它应在直线1的下方,此时就出现了错。可以看到直线2有更好的容错性。。

所以支持向量机(SVM)解决线性可分的问题的最终目的,就是如何找到这样一条直线能够将两个类分开,并且有好的容错性。

支持向量机(SVM)的作者想到了一个非常好的方法来找到这条直线。

观察图中的实线,将图中的直线平行地上下移动,当直线插到两个类中的向量时就停止,如图中虚线所示。这样我们就得到了这条直线的一个“取值范围”。将两条虚线的距离等于d,则使d最大的那条直线就是我们要找的直线。但是在整个“取值范围”内,有无数条这样的直线,距离两个分类均为d/2(在两条平行虚线的正中间)的直线是我们想要的直线。

我们称这个d为间隔(Margin),将平行线所插到的向量称为支持向量。

 

此时,我们给出定义:

1.训练数据及标签:(x1,y1),(x2,y2),...,(xn,yn)

x1,x2为向量,x1=(x11,x12,...,x1m)T。y1,y2为标签,取值为±1(二分类问题)。

2.线性模型:(w,b),wTx+b=0(超平面)

w为向量,w=(w1,w2,...,wm)。

在给出了线性模型的情况下,我们可以给出线性可分的严格数学定义:

对于{(xi,yi)},i=1~N,存在(w,b),使:对任意i~1~N,有

a.若yi=+1,则wTxi+b\geq0

b.若yi=-1,则wTxi+b\leq0

合写则为:yi(wTxi+b)\geq0

即,满足yi(wTxi+b)\geq0,为线性可分。

 

提出以下两点:

1.w^{T}xi+b=0 与 aw^{T}xi+ab=0 是同一个平面,a∈R^{+}

即我们可以放缩w和b的值。

2.点到平面距离公式:

有平面:w_{1}x+w_{2}y+b=0,点(x_{0},y_{0}y_{0}),则d=\frac{|w_{1}x_{0}+w_{2}y_{0}+b|}{\sqrt{w_{1}^{2}+w_{2}^{2}}}

扩展到多维的情况,有超平面w^{T}x+b=0,d=\frac{|w^{T}x_{0}+b|}{||w||}

因为我们可以用a来放缩w和b的值。使|w^{T}x_{0}+b|=1,则d=\frac{1}{||w||}

 

此时,我们就可以定义一个线性可分情况下的优化问题:

最小化:\frac{1}{2}||w||^{2}(乘以\frac{1}{2},是为了方便后续的求导计算,并不会影响最终结果)

限制条件:yi[w^{T}xi+b]\geq1(i=1~N)

这是凸优化问题中的二次规划问题。

满足:目标函数是二次项,限制条件为一次项

此时,要么问题无解,要么只有一个极值。

现在,我们给出了在线性可分情况下,支持向量机(SVM)的优化目标。

下一节,我们将扩展到非线性可分情况下的支持向量机(SVM)。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值