卷积神经网络应用实例,卷积神经网络经典模型

本文介绍了如何使用Python和Keras构建卷积神经网络,包括安装环境、模型构建步骤、以及卷积神经网络在形状识别、人脸检测和文字识别等领域的应用。通过实例展示了卷积神经网络在图像特征提取中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能需要学习哪些课程

阶段一是Python教学:类型与运算、语句与语法、函数、作用域、迭代和解析。

模块、面向对象编程、异常处理等);阶段二是数学:微积分、线性代数、概率基础、贝叶斯公式、高斯分布、参数估计、信息论基础等;.阶段三是框架:常用科学计算框架、Tensorflow等。

阶段四是深度学习:机器学习基础、卷积神经网络、循环神经网络、生成式对抗神经网等、深度强化学习等。

阶段五是商业项目实战:Tensorflow、MTCNN、CENTERLOSS人脸侦测和人脸识别、YOLOV2多目标多种类侦测、GLGAN图像缺失部分补齐、NLP智能应答、语言唤醒等。

谷歌人工智能写作项目:爱发猫

怎样用python构建一个卷积神经网络

用keras框架较为方便首先安装anaconda,然后通过pip安装keras以下转自wphh的博客文案狗

#coding:utf-8'''    GPU run command:        THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python     CPU run command:        python 2016.06.06更新:这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。

现在keras的API也发生了一些的变化,建议及推荐直接上看更加详细的教程。

'''#导入各种用到的模块组件from __future__ import absolute_importfrom __future__ import print_functionfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.models import Sequentia

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值