
机器学习
文章平均质量分 96
晓海xhl
一个南方男孩,深漂青年。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
聚类算法(K-Means和DBSCAN)
聚类算法(K-Means和DBSCAN)目录一、无监督学习与聚类算法1、旨在理解数据自然机构的聚类2、用于数据处理的聚类二、核心概念1、聚类分析2、簇三、基于原型的技术:K-Means1、基于原型的簇2、K-means的基本定义3、算法执行细节四、使用sklearn实现K-Means1、重要参数:n_clusters2、聚类算法的模型评估指标:轮廓系数3、案例:基础轮...原创 2019-12-29 18:48:17 · 5848 阅读 · 0 评论 -
决策树 Decision Tree
决策树 Decision Tree一、学习决策树1、决策树模型2、学习算法二、 特征选择1、香农熵2、信息增益3、划分数据集三、决策树的生成1、ID3算法2、C4.5算法四、决策树的拟合度优化1、欠拟合和过拟合2、决策树剪枝五、CART算法六、sklearn实现决策树七、分类模型的评估指标1、二分类决策树中的样本不不均衡问题2、混淆矩阵八、决策树算法评价一...原创 2019-12-29 12:09:40 · 1656 阅读 · 0 评论 -
线性回归原理
线性回归目录一、线性回归介绍二、多元线性回归1、原理2、最小二乘法求解多元线性回归的参数3、sklearn练习三、回归类模型评估指标1、是否预测到了正确的数值2、是否拟合到了足够的信息四、岭回归和Lasso1、多重共线性2、岭回归3、Lasso一、线性回归介绍回归是一种应用广泛的预测建模技术,这种技术的核心在于预测的结果是连续型变量。KNN这样的分类算法的预测标签是分...原创 2019-12-01 17:15:42 · 1479 阅读 · 0 评论 -
网格搜索(GridSearch)及参数说明,实例演示
网格搜索(GridSearch)及参数说明,实例演示一)GridSearchCV简介网格搜索(GridSearch)用于选取模型的最优超参数。获取最优超参数的方式可以绘制验证曲线,但是验证曲线只能每次获取一个最优超参数。如果多个超参数有很多排列组合的话,就可以使用网格搜索寻求最优超参数的组合。网格搜索针对超参数组合列表中的每一个组合,实例化给定的模型,做cv次交叉验证,将平均得分最高的超参数...原创 2019-11-17 14:24:09 · 10428 阅读 · 0 评论 -
逻辑回归
逻辑回归目录一、概述1、介绍2、作用二、sklearn 中逻辑回归1、二元逻辑回归的损失函数2、重要参数penalty & C3、梯度下降:重要参数max_iter一、概述1、介绍我们接触了不少带“回归”二字的算法,回归树,随机森林的回归,线性回归,无一例外他们都是区别于分类算法们,用来处理和预测连续型标签的算法。然而逻辑回归,是一种名为“回归”的线性分类器,其本质是...原创 2019-10-19 14:33:56 · 584 阅读 · 0 评论