- 博客(10)
- 收藏
- 关注
原创 【学习笔记】大模型之美-LangChain 内存机制ConversationChain
本文介绍了LangChain的四种对话记忆管理方法:1)滑动窗口记忆(保留最近K轮对话);2)摘要记忆(动态生成对话摘要);3)摘要缓冲记忆(结合近期对话和长期摘要);4)实体记忆(提取关键信息)。从功能特点、适用场景、关键参数等方面进行了对比分析,并提供了代码示例。建议根据对话长度、细节需求、Token限制等因素选择合适方法,如短对话用滑动窗口,长对话选摘要缓冲记忆,需跟踪关键信息则用实体记忆。
2025-05-24 18:45:20
767
原创 【学习笔记】LangChain链式思维处理的几个常用Chain
本文介绍了LangChain框架中的几种核心链式处理工具及其应用场景。LLMChain用于将提示模板与大语言模型结合,实现基础链式处理;LLMMathChain专注于解决数学计算问题;LLMRequestsChain用于生成HTTP请求并解析响应;TransformChain提供自定义数据转换功能;VectorDBQA结合向量数据库实现文档问答;SequentialChain则用于将多个链按顺序串联执行,支持简单和复杂的多步骤任务。文章还提供了各链的示例代码和关键注意事项,帮助开发者灵活构建自动化流程,充分
2025-05-22 14:57:04
1444
原创 【学习笔记】大模型之美-本地部署RAG
继承LangChain的LLM基类,集成本地部署的ChatGLM-6B-int4模型需要提前加载模型和分词器支持自定义模型参数和类型标识。
2025-05-19 10:00:00
675
原创 【学习笔记】Token?向量?Encoding?Embedding?分词?傻傻分不清楚
在自然语言处理(NLP)中,Token、向量、Encoding和Embedding是核心概念。Token是文本分词后的最小单元,如单词或符号。Encoding将文本分割为Token,而Embedding则将Token转换为向量,这些向量是多维数组,用于表示Token的语义和语法特征。向量作为模型可处理的连续数值表示,编码了语义信息。
2025-05-15 14:00:00
1483
原创 【学习笔记】为什么需要 encoding?
在自然语言处理(NLP)中,Token 是文本的最小语义单元,可能是单词、子词或字符。Encoding 是将文本转换为模型能够理解的数字表示(即Token)的关键步骤,通常包含分词和后续处理。Tokenization 是将原始文本拆分为离散的语义单元(Token)的过程,而 Encoding 则进一步将Token转换为模型可理解的数字形式(如ID)。必须使用 Encoding 的原因包括:模型只能处理数字化的输入、准确计算Token数量以及处理跨语言和特殊符号。
2025-05-13 10:00:00
791
原创 【学习笔记】如何增强AI的记忆力?
文章探讨了在大模型多轮对话中,如何通过记忆增强技术优化成本与用户体验。首先,分析了多轮对话中按字收费的Token费用原理及其导致的资源浪费问题。随后,提出了三种记忆增强解决方案:混合记忆架构、记忆快照和遗忘曲线优化。这些方案通过区分短期、中期和长期记忆,以及智能清理不必要信息,显著减少了Token消耗。最后,文章提供了实施建议,包括信息分级、工具选择和效果监测,并强调了隐私保护和灵活调整的重要性。通过这些策略,可以实现成本与用户体验的最佳平衡。
2025-05-11 13:23:00
805
原创 【学习笔记】机器学习模型指标之召回率(Recall)
公式:TP(真阳性):模型正确预测的正例FN(假阴性):模型漏检的正例(实际为真,但预测为假)核心意义:衡量模型“找全正例”的能力(避免漏检)。✅ 漏检成本高的场景:疾病筛查(癌症检测)安全监控(机场安检)法律文档检索(不能遗漏关键证据)权衡关系:↑召回率 → 可能 ↓精确率(模型更激进)↑精确率 → 可能 ↓召回率(模型更保守)调低分类阈值:让模型更“宽松”地标记正例。优化数据:对正例过采样,或给FN更高惩罚权重。增强特征:添加更多与正例相关的特征(如医学检测中的详细指标)。换模型:使用对正例敏感的模型(
2025-05-07 15:28:16
689
原创 【学习笔记】AI Agent智能体学习—ReAct框架
的智能体架构,可以通过动态环境感知、多步决策和反馈调整,实现复杂任务的自动化解决。:长程任务可能导致提示(Prompt)过长,需结合检索增强(RAG)或记忆压缩技术。每一步思考(Thought)均基于之前的所有观察(Observation)生成。”,并重置为初始状态(如打开浏览器)。:LLM定位到词条中的“早年生活”部分,找到出生地信息。动作,环境返回搜索爱因斯坦后的页面加载成功的观察结果。:确保动作符合伦理约束,并提供决策依据的可追溯性。动作,环境返回页面加载成功的观察结果。在爱因斯坦的示例中,代码的。
2025-04-30 17:04:58
1443
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人