一图胜千言-顶刊级科研绘图工坊暨AI支持下Nature级数据可视化
第一章、绘图原则与概念:规范清晰简洁自明
1、科研绘图的基本原则与概念
2、绘图的简洁性、一致性、准确性、自明性
图形的基本元素(尺寸、格式、分辨率、字体、配色、高分论文案例)
第二章、DeepSeek、ChatGPT、R绘图系统:八仙过海各显神通
1、R语言的基本用法和数据处理
2、R语言的做图系统
(1)Rbase基础绘图系统:基础图形函数(plot、lines、points等)
(2)ggplot2系统:层次化绘图理念,主题设计与自定义
(3)lattice系统:多面板图形与条件绘图
(4)plotly系统:交互式图表绘制与3D图形应用
3.DeepSeek和chatGPT支持下的科研绘图
第三章、美学设计与细节:完美图表华丽呈现
3. 图表的美学与设计
1. 配色方案
2. 标题
3. 坐标轴设计
4. 图例:清晰标注图例位置与内容
5. 字体:字体大小、类型与间距的选择
6. 线条:线条的粗细、样式选择及其与背景的对比
7. 背景:透明或简洁背景设计,提高视觉清晰度
第四章、数据类型与图表:宝典在手各个击破
1. 常见数据格式:如何识别数据类型,选择适当图表
2. 科研绘图全类型绘制
1)散点图、气泡图:适合显示两组数据关系
2)折线图、柱状图:趋势分析与比较
3)箱线图、小提琴图:数据分布分析
4)云雨图、直方图、密度图:数据分布的不同展示方法
5)饼图、雷达图、玫瑰图:比例关系与环形展示
6)热力图、聚类热图、相关矩阵图:数据相似性展示
7)瀑布图、条形图、面积图:时间序列或分布展示
8)堆积图、桑基图:展示流动与比例
9)词云图、关联图:文本数据与关系网络
10)环形图、和弦图:比例与结构关系
11)生存曲线图、漏斗图:生物医学与临床数据分析
12)森林图、韦恩图、upset图:元分析与交集分析
13)UMAP图、函数曲线图:降维与函数关系展示
14)箱线密度图、神经网络图:机器学习与深度学习数据展示
15)环形热图、公式图:其他特殊类型的应用
第五章、统计分析与可视化:精确数据尽在图中
1. 图表中的统计与分析
1)基本统计:均值、标准差、置信区间、t检验、方差分析
2)回归分析与主成分分析:如何展示线性与非线性关系
3)p值与信号:如何标注统计显著性
4)RMSE与R²:图中显示回归模型评估指标RMSE、R2等
5)注释与细节:如何通过注释和细节增强图表的可解释性
第六章、地理空间与GIS:地理数据鲜活地图
1. 地理信息系统(GIS)与地理空间分布绘图
1)GIS简介:地理空间数据与GIS工具的应用
2)空间分布图绘制:地图可视化,热力图与点图
3)地理数据处理与可视化:如何处理地理坐标与绘图
4)实践应用:地理数据的实际案例分析
第七章、GIF制作与展示:图形动态活灵活现
1. GIF动图的绘制
2. 审稿意见的常见问题及处理
1)动图制作原理:如何通过GIF展示数据变化
2)R与其他工具的动图生成:gganimate、plotly等
3)动图的应用场景与注意事项
第八章、多图合成与排版:高效布局子刊密码
1. 多图合成与高级排版
1)组图系统:如何在一张页面中合理组合多个图表
2)高级排版技巧:排版美学与信息传达的平衡
3)制作长文图表:如何制作长条形图、时间轴等特殊排版
4)实践应用:结合案例进行多图合成与排版练习
第九章、技术路线与流程:概念生动逻辑清晰
1. 技术路线图绘制
1)技术路线图的概念与应用:科研工作流程与技术路线
2)图表设计原则:如何通过图表表达技术流程与进展
3)实践应用:技术路线图绘制的具体案例
2. 概念图绘制
1)AI绘图:如何使用AI绘制概念图
2)神经网络概念图:如何使用AI辅助绘图,制作神经网络与机器学习流程图
3)图形摘要的绘制:如何通过简洁明了的图形总结研究核心
第十章讨论
讨论与提升
高水平学术论文写作的“破局”之道暨AI支持下的高分SCl论文前期准备、写作、高质量图表制作、投稿技巧一站式提升
第一章、强基础:前期准备与工具使用
1、SCI科技论文写作的流程
2、不同风格期刊SCI论文的基本结构
3、文献高级检索、AI辅助阅读及选题探索
1)Web of Science高级检索(AND、OR、NOT、NEAR、SAME、通配符等指令的灵活使用)、GPT插件Consensus的检索
2)EndNote、Zotero高级文献管理技巧
3)文献计量分析:VOSviewer、R bibliometrix识别研究热点和趋势,文献网络结构分析与绘图
4)三种常用的文献翻译工具
5)AI大模型(ChatGPT、UPDF、SCISPACE)辅助文献阅读和文献综述
6)AI大模型辅助科研的优势及误区
第二章、养习惯:SCI文献追踪与科研思维养成
1、文献动态追踪工具使用
Researcher:文献搜索/追踪神器,根据期刊和主题追踪热点
ResearchGate:科研博客,追踪领域大牛最新成果
Google scholar:精准定位最新热点
Scholarcy:自动提取文献数据,构建闪卡,帮助记忆和复习文献
官网的专刊汇编,比如Nature collection追踪最新主题
Connected Paper、app.litmaps
2、AI大模型提炼文献中的科学问题和前沿想法idea
3、Idea的记录和归纳总结,形成自己的idea库和方法库
1)想法记录:随时记录文献中的科学问题、前沿想法和研究缺口
2)创新方法:文献中创新方法的总结及大模型辅助下的快速学习
3)科研思维:时刻琢磨创新点,锻炼科研思维的方法
第三章、学套路:SCI论文写作技巧
一篇高质量SCI论文是如何写出来的
1. 搭框架——万丈高楼平地起
SCI论文的写作步骤不是从头往后写,好的框架和写作顺序决定一切
2. 史上最强的SCI论文结构拆解
1)SCI结构全拆解:顺着套路,作者易写,专家易审、读者易读
2)取好标题的几种方法:一叶知秋,窥见全文
3)倒三角式的引言结构拆解:循序渐进、引人入胜
4)材料与方法:5W一目了然、流程图锦上添花
5)结果展示:正文图表内容设计,由浅入深,概括结果的语言模板
6)正三角式由小及大的讨论写法
7)论文结论:每个句子模板,流量思维,构思一句话爆点结论
3. 手中有粮 心中不慌:SCI论文不同模块的句式模板大全
4. 细装饰:借助AI大模型,根据不同期刊风格对论文进行精雕细琢
5. Supplementary附件的准备及写作
第四章、装门面:高质量的图表制作和排版
1. 图表的制作和排版(赏心悦目,一目了然)
1)Nature、Science、Cell及其子刊的图表设计与安排
2)领域顶刊和一区论文的图表设计与安排
3)高级
2. AI大模型辅助下的流程图和高级技术路线图的绘制
3. AI大模型的科研绘图:AI赋能,万图归宗;修改腾挪,无所不能
柱状图、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图
4. 符合期刊投稿的高清矢量图输出与图形排版组合软件的使用
5. AI辅助下的概念图及其素材制作
1)生成取之不尽用之不竭的科研图形素材
2)如何将素材制作成形象生动的概念图
第五章、再提升:论文润色、自我审稿和复查
1.Grammarly支持下的语法、拼写检查
2.大模型支持下的论文润色、翻译、自我检查方法
3.大模型支持下的查重与抄袭检测
4.论文前后术语、语言风格的一致性检查
5.重点错误的查找:significance的规范等
6.投稿前Coauthor的稿件发送、意见搜集、反复修订
第六章、善投稿:目标期刊选择和投稿系统熟悉
1. 目标期刊的选择
1)了解目标期刊的征稿范围和兴趣点
2)选刊神器和期刊管理(justScience、桑格学术、journal finder等)
3)影响因子和学术分区
4)Google期刊分类应用拓展
2. Cover letter的撰写
3. Highlights撰写
4. Graphical Abstract准备与绘制
5. Data和Code的共享机制和方法,知识产权共享与保护
6. Nature、Science、Cell、Elsevier、Wiley、Springer、AGU等系统投稿流程的熟悉与投稿文件准备
第七章、能应变:审稿意见的学习与应对
1. 审稿人视角看一篇论文
1)三看、三问审查一篇论文
2)不同期刊审稿用语(Submitted、With Editor、Review Invited、Under review、Required Reviews Complete、Decision in Process等)解析
2. Nature等期刊审稿意见学习
3. 审稿意见的常见问题及处理
创新性不足、重复研究、立意不明、理解不够、研究问题不清、结构不清晰、章节内容拖沓、概念不清、结果分析不够、研究方法存在问题、数据测试考虑不足、结果无法验证、数据可靠性不足、逻辑不清、图文不一致、数据不足、讨论不深入、图表存在问题、没有与前人结果对比、语法时态等语言问题、格式不连贯、前后不一致等等
4. 根据审稿意见修改稿件,尽可能Positive
5. 审稿意见撰写的几种风格,真情实意还是以理服人
6. 审稿意见的写作模板
第八章、多讨论:常见问题与讨论
论文写作常见问题汇总与讨论,学会以审稿人角度写论文
AI赋能R-Meta分析核心技术:从热点挖掘到高级模型、助力高效科研与论文发表
专题一、AI+Meta分析的选题与检索、寻找科学问题
1、AI大模型助力Meta分析的选题与文献检索
1)什么是Meta分析
2)Meta分析的选题策略
3)精确检索策略,如何检索全、检索准
4)文献的管理与清洗,如何制定文献纳入排除标准
5)文献数据获取技巧,研究课题探索及科学问题的提出
6)文献计量分析CiteSpace、VOSViewer、R bibliometrix及研究热点分析
7)AI大模型的发展与底层逻辑
8)AI大模型的高级提问框架
9)AI大模型助力寻找科学问题
专题二、AI助力Meta分析与R语言数据清洗及统计方法
2、Meta分析的常用软件/R语言基础及统计学基础
1)R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用
2)AI大模型助力,实现R语言基本操作与数据清洗
3)统计学基础和常用统计量计算(sd\se\CI)、三大检验(T检验、卡方检验和F检验)
4)传统统计学与Meta分析的异同
5)R语言Meta分析常用包及相关插件讲解
从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。
专题三、AI+R语言Meta效应值计算与图形绘制
3、AI大模型助力R语言Meta效应值计算
1)R语言Meta分析的流程
2)各类meta效应值计算、自编程序和调用函数的对比连续资料的lnRR、MD与SMD分类资料的RR和OR
3)R语言meta包和metafor包的使用
4)如何用R基础包和ggplot2绘制漂亮的森林图
专题四、如何利用AI+R语言Meta分析与回归分析、混合模型构建
4、AI大模型助力R语言Meta分析与混合效应模型(分层模型)构建
1)Meta分析的权重计算
2)Meta分析中的固定效应、随机效应
3)如何对Meta模型进行统计检验和构建嵌套模型、分层模型(混合效应)
4)Meta回归和普通回归、混合效应模型的对比及结果分析
5)使用Rbase和ggplot2绘制Meta回归图
专题五、AI+R语言Meta诊断分析进阶
5、AI大模型助力R语言Meta诊断进阶
1)Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)
2)异质性检验及发表偏移、漏斗图、雷达图、发表偏倚统计检验
3)敏感性分析、增一法、留一法、增一法、Gosh图
4)风险分析、失安全系数计算
5)Meta模型比较和模型的可靠性评价
6)Bootstrap重采样方法评估模型的不确定性
7)如何使用多种方法对文献中的SD、样本量等缺失值的处理
8)AI大模型复现Science最新Meta分析案例
专题六、AI+R语言Meta分析的不确定性及贝叶斯Meta分析
6、AI大模型助力R语言Meta分析的不确定性
1)网状Meta分析
2)贝叶斯理论和蒙特拉罗马尔可夫链MCMC
3)如何使用MCMC优化普通回归模型和Meta模型参数
4)R语言贝叶斯工具Stan、JAGS和brms
5)贝叶斯Meta分析及不确定性分析
专题七、AI+Meta机器学习方法应用
7、AI大模型助力机器学习在Meta分析中的应用
1)机器学习基础以及Meta机器学习的优势
2)Meta加权随机森林(MetaForest)的使用
3)使用Meta机器学习和传统机器学习对文献中的大数据训练与测试
4)如何判断Meta机器学习使用随机效应还是固定效应以及超参数的优化
5)使用Meta机器学习进行驱动因子分析、偏独立分析PDP
专题八、讨论与答疑
1 练习
2 讨论与答疑