自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(354)
  • 收藏
  • 关注

原创 了解碳排放核算与生命周期评价方法,掌握可行性研究报告、建设方案、初步设计、施工图设计的建筑碳排放计算

帮助广大科研人员、建筑师与工程师更加系统地学习建筑碳排放的基础理论知识及在建筑设计全过程对建筑碳排放进行计算分析,了解碳排放核算与生命周期评价方法,掌握可行性研究报告、建设方案、初步设计、施工图设计的建筑碳排放计算与分析方法。4、建设方案阶段的建筑运行碳排放的计算方法。5、建设方案阶段的建筑隐含碳排放的计算方法。1、初步设计阶段的建筑运行碳排放的计算方法。2、初步设计阶段的建筑隐含碳排放的计算方法。4、施工图阶段的建筑运行碳排放的计算方法。5、施工图阶段的建筑隐含碳排放的计算方法。

2025-08-05 09:49:25 129

原创 GAMS安装和介绍、GAMS程序编写、GAMS程序调试、实际应用算例演示与经验分享......

优化分析是很多领域中都要面临的一个重要问题,求解优化问题的一般做法是:建立模型、编写算法、求解计算。各领域研究人员掌握GAMS这一强大优化工具的使用,更好地解决专业问题,内容包括典型优化模型和算法介绍、GAMS安装和介绍、GAMS程序编写、GAMS程序调试、实际应用算例演示与经验分享等五个章节,算例中除了一般案例展示还涵盖了基于GAMS的实际应用案例分析。三、数学优化方法(分支定界法、动态规划法、拉格朗日松弛法、内点法、奔得斯分解法等)一、典型优化模型(LP、NLP、MIP、MINLP、MIQCP等)

2025-08-05 09:34:41 83

原创 基于CAMX大气臭氧来源解析模拟与臭氧成因分析实践技术应用--分析大气污染的来源、成因、污染程度、持续时间、主要成分

我国经济快速发展,但大气污染问题日益突出。大气污染是工业、农业、生活、交通等人为活动与气象因素共同作用的结果,既有局部性也有区域性。污染物不仅影响本地,还会扩散到下风向地区。数值模拟是研究大气污染的重要工具,可分析污染来源、成因和影响,为污染防控和产业调整提供依据。国内外已开发多种空气质量模型,广泛应用于预警、污染防治等领域。CAMx模型是美国研发的大气污染物计算模型,主要用于评估臭氧和颗粒物污染。20年来,该模型已在全球多个国家和地区应用。

2025-08-04 10:42:27 323

原创 CLM5.0陆面模式从入门到精通:安装配置、区域模拟与代码开发全解析​

NCAR开发的CLM(Community Land Model)是CESM地球系统模式中的陆面过程模块,它综合了BATS、LSM等模式的优点,并加入了水文过程。CLM是目前国际上最完善的陆面模式之一,能够模拟生物地球物理过程、水文循环、碳氮循环、动态植被等,适用于冻土、林火、城市冠层等多种陆面过程研究。CLM已发展到4.5版本,即将发布的5.0版本主要改进了土壤植被水文、积雪过程、碳氮循环和植被模拟等功能,并新增了MOSART径流模型和FATES生态演替模型。了解CLM 几大模块的组成及相应的程序位置。

2025-08-04 10:31:46 219

原创 Python-PLAXIS自动化建模技术与典型岩土工程案例

通过该简单案例熟悉:导入模块,新建输入服务器,土体区域,钻孔,土层,材料,属性设置,土体单元赋值,模式转换,线荷载的施加,网格划分,输出服务器,选监测点,阶段递进,线荷载激活,计算,输出服务器获取结点位移等数据,输出,保存。3. 砂土地基上圆形基础的沉降(刚性基础与柔性基础)Python代码实现及地基土体随机场的实现(包括土体单元颜色的实现)4、Plaxis模式介绍(地层模式、结构模式、网格模式、水位模式、分阶段计算模式等)(2)钻孔的建立、土层的建立、土层属性、水力条件及初始条件、导入土层。

2025-08-02 11:25:04 889

原创 岩土工程渗流问题之有限单元法:理论、模块化编程实现、开源程序手把手实操应用

主要针对岩土工程中的渗流问题(后续将进行强度问题、固结问题等专题),用四个晚上的时间,手把手教大家如何步一步地搭建自己的模型,包括前处理输入文件的准备、计算可执行文件的编译生成、后处理输出文件的可视化等,其中的编程模块尽可能做到让学员零基础开始,通过提供标准程序库使用搭积木、摆乐高的形式模块化进行,加强学员的易上手、可操作性。2)输入文件准备、输出文件(水头分布、渗流量、坝下渗透浮力、水力梯度分布)、IrfanView的安装、Paraview可视化(手把手操作与讲解)、流函数流线解。

2025-08-02 11:16:17 331

原创 地表蒸散发遥感产品信息提取验证与融合实践技术应用

蒸散发地面观测数据较为多样,主要包括:蒸渗仪系统、波文比系统、涡动相关系统、闪烁仪、机载涡动相关系统等。主要介绍常用的区域及全球蒸散发产品,讲解蒸散发数据产品的下载、处理、可视化、数值统计等方法;目前,全球有将近几十种地表蒸散发产品,本课程挑选了9种常用的地表蒸散发产品,并详细讲解这些产品的下载,并利用Python程序进行遥感信息的提取、可视化、信息统计等。水量平衡验证是以流域或子流域为验证单元,在多年尺度(无陆地总储水量变化数据)和月尺度(有陆地总储水量变化数据)对多种蒸散发产品进行验证的方法。

2025-08-01 10:27:37 218

原创 农田通量计算方法与应用

由于热红外遥感对地表干湿变化、以及农业干旱响应快速,利用地表温度遥感数据可以快速准确的反演地表水热通量。地表水热通量是陆面与大气交互的重要变量,包含了陆面和大气的共同信息。利用机器学习方法,综合地面观测资料、遥感数据、大气数据进行区域蒸发比参数的训练与建模,作为区域蒸发比参数的先验值。MATLAB软件程序进行模型参数的调优,包括蒸发比、湍流传输系数、观测与模型误差、迭代次数等。包括风速、气温、大气压、相对湿度、太阳辐射、大气下行辐射,以及资料发生缺失如何填充等。感热通量、潜热通量、蒸发比的计算与处理。

2025-08-01 10:26:03 228

原创 双碳目标下农田温室气体排放估算与模拟实践技术应用

从生命周期评价法(LCA)、经验模型和过程模型三个维度讲解农田温室气体排放的模拟,详细介绍甲烷(CH4)、氧化亚氮(N2O)和二氧化碳(CO2)的排放过程以及模拟技术,掌握农田温室气体排放的模拟技术。①氧化亚氮(N2O)排放的过程(氮素的硝化作用与反硝化作用)④DSSAT模型的总温室气体和作物生产模拟。1.不同作物、不同情景下温室气体排放的模拟。④两三库模型的编写和呼吸CO2的模拟。②N2O的模拟的主流方法和模型。农田温室气体排放的模拟研究。②CH4排放的模拟研究。③N2O排放的模拟练习。

2025-07-31 11:22:34 130

原创 R语言与作物模型(以DSSAT模型为例)融合应用

随着基于过程的作物生长模型(Process-based Crop Growth Simulation Model)的发展,R语言在作物生长模型和数据分析、挖掘和可视化中发挥着越来越重要的作用。现有版本V4.7能模拟27种主要农作物的生长发育和产量形成过程,被广泛应用于精细农业、水肥管理、气候变化、粮食安全、土碳循环、环境影响、农业可持续性、农业生态等诸多与农业生产和科研有关的领域。R语言在DSSAT模型的气候、土壤、管理措施等数据准备,自动化模拟和结果分析上都发挥着重要的作用。

2025-07-30 11:20:56 231

原创 Noah-MP陆面过程模型建模方法与站点、区域模拟

基于完整的单站模拟流程,选择课程示例站点之外的一个站点,完成数据下载、变量提取、格式转换、数据编译、模型参数设定、模型运行、结果提取与导出、结果可视化等操作。基于完整的区域模拟流程,选择课程示例区域之外的一个区域,完成数据下载、变量提取、格式转换、数据编译、模型参数设定、模型运行、结果提取与导出、结果可视化等操作。一般情况下,将此文件作为模型的高程输入数据即可。Noah-MP模型运行所需的linux环境的搭建、intel编译器的安装与配置、必要软件的下载与安装、模型构建与编译等内容,细化步骤、逐指令讲解。

2025-07-30 11:17:32 868

原创 震惊!Python+多光谱遥感竟能这样玩?深度学习分类效果超乎想象!

针对多光谱数据处理,除了ENVI自带和拓展的功能之外,提供一套基于Python开发方法,结合目前主流的机器学习和深度学习方法,介绍多光谱遥感数据的整理、图像分类、多时间序列处理、多传感器协同等方法,基于python实现多光谱数据处理和分析过程。通过对光谱、图像等数据处理,掌握岩矿、土壤、植被等地物的光谱特征和图像特征,结合ENVI等专业软件、Python开发工具平台,开展多光谱数据预处理、图像分类、定量评估、机器学习等方法的实践和开发,提高运用多光谱遥感技术解决实际问题能力。值、辐射亮度等基本理论和概念。

2025-07-29 09:57:14 737

原创 农业模型大突破!Python+DSSAT自动化模拟,结果准到离谱!

随着数字农业和智慧农业的发展,基于过程的作物生长模型(Process-based Crop Growth Simulation Model)在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农业碳中和、农田固碳减排等领域扮演着越来越重要的作用。现有版本V4.7能模拟27种主要农作物的生长发育和产量形成过程,被广泛应用于精细农业、水肥管理、气候变化、粮食安全、土壤碳周转、环境影响、农业可持续性、农业生态等诸多与农业生产和科研有关的领域。1 使用Python读取DSSAT文件的模拟结果。

2025-07-29 09:40:49 310

原创 最新DSSAT作物模型建模方法

随着数字农业和智慧农业的发展,基于过程的作物生长模型(Process-based Crop Growth Simulation Model)在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农业碳中和、农田固碳减排等领域扮演着越来越重要的作用。了解和熟悉DSSAT模型的关键算法和软件的操作是学习DSSAT模型的基础。此外,想要成为一名优秀的作物模型使用者与科研团队不可或缺的人才,除了掌握对作物模型相关知识之外,还要掌握模型的快速模拟和高效数据分析能力。模型的农田管理措施的准备。

2025-07-28 11:31:33 325

原创 如何利用python机器学习解决空间模拟与时间预测问题及经典案例分析

了解机器学习的发展历史、计算原理、基本定义,熟悉机器学习方法的分类,常用机器学习方法,以及模型的评估与选择;理解机器学习在生态水文中的应用,掌握机器学习模型构建方法,学会构建机器学习模型用于地表参数的空间模拟与时间预测,并掌握生态水文过程分析。了解机器学习的发展历史、计算原理、基本定义,熟悉机器学习方法的分类,常用机器学习方法,以及模型的评估与选择;理解机器学习在生态水文中的应用,掌握机器学习模型构建方法,学会构建机器学习模型用于地表参数的空间模拟与时间预测,并掌握生态水文过程分析。编译工具组合安装教程。

2025-07-28 11:30:36 143

原创 MATLAB近红外光谱分析技术及实践技术应用

核函数的作用是什么?1、主成分分析(PCA)、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?2、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?3、MATLAB文件读写(mat、txt、xls、csv、jpg、wav、avi等格式)4、案例演示:一维卷积神经网络的MATLAB实现(基于卷积神经网络的近红外光谱建模)3、值得研究的若干问题(欠拟合与过拟合、泛化性能评价指标的设计、样本不平衡问题等)

2025-07-26 09:19:05 431

原创 ChatGPT与R语言融合技术在生态环境数据统计分析、绘图、模型中的实践与进阶应用

1)非约束排序(PCA、PCoA、NMDS)分析:模型选择、结果解读及绘图。4.GPT辅助系统发育相关数据分析案例:模型构建、模型比较、模型诊断等。1) 基础绘图类型:散点图、箱线图、频率图、提琴图、峰峦图、相关图等。2.GPT辅助空间自相关数据分析案例:模型构建、模型比较、模型诊断等。3.GPT辅助时间自相关数据分析案例:模型构建、模型比较、模型诊断等。2) 二项分布(0,1)混合效应模型:数据检查、模型构建、结果展示。2.广义可加模型(GAM)案例:模型构建、模型诊断、结果绘图等。

2025-07-26 09:08:53 644

原创 临床医生必学:AI支持下的临床医学日常工作、论文撰写、数据分析与可视化、机器学习建模中的实践应用

课题申请书撰写技巧及要点剖析(项目名称、关键词、摘要、立项依据、参考文献、研究目标、研究内容、研究方案、关键科学问题、可行性分析、创新点与特色之处、预期研究成果、工作基础等)、生成视频、制定个性化的学习计划、检索论文、总结论文内容、总结视频内容、撰写论文、论文翻译、论文润色与修改、参考文献格式管理、论文评审、数据分析、生成代码、代码调试等)中的多种视图(正视图、后视图、侧视图、四分之三视图、鸟瞰视图、全景视图、第一人称视角、分割视图、截面视图等)选择、交叉、变异三个算子的作用分别是什么?

2025-07-25 11:07:30 905

原创 基于AI支持下的自然科学研究全流程实践技术应用

以ChatGPT-4o代表AI大语言模型引领了新一波人工智能浪潮,也在自然科学各个过程中提升生产力,通过生物、地球、农业、气象、生态、环境、GIS科学领域中的大量案例,结合数据、文本、图片、代码、语音、视频等不同形式的数据、模式和内容,讲解自然科研的全流程,通过大模型辅助编写Python和R语言代码以及大模型API二次开发等技术对案例进行实现,带领大家快速进入科研新范式。5)主成分分析、LDA、NMS、T-SNE、UMAP、Kmeans、Agglomerative、DBSCAN。

2025-07-25 11:02:54 794

原创 激光雷达数据处理与典型案例分析

特点:Terrasolid是一款专业的激光雷达数据处理软件,主要用于地理信息系统(GIS)和测绘领域,提供了丰富的地理数据处理和分析工具。特点:ArcGISPro是一款专业的地理信息系统(GIS)软件,提供了丰富的地理数据处理、分析和可视化功能,包括激光雷达数据处理工具。特点:ENVI是一款专业的遥感数据处理软件,提供了丰富的遥感图像处理和分析功能,包括对激光雷达数据的处理和分析。应用:适用于地图制作、空间分析、地理数据管理等领域,可以处理各种类型的地理数据,包括激光雷达数据。

2025-07-24 09:03:04 487

原创 基于R语言的结构方程模型(SEM)全流程解析:从理论到生态学高阶应用实战

结构方程模型(Sructural Equation Model)是一种建立、估计和检验研究系统中多变量间因果关系的模型方法,它可以替代多元回归、因子分析、协方差分析等方法,利用图形化模型方式清晰展示研究系统中变量间的因果网络关系,是近年来地学、生态、进化、环境、医学、社会、经济领域中应用十分广泛的统计方法。本课程包括8个专题,包括R语言入门及结构方程模型原理介绍(见课程内容介绍),既适合R语言和结构方程模型的初学者,也适合对结构方程模型有高阶应用需求的研究生和科研人员。

2025-07-24 08:55:26 891

原创 MATLAB 2024b深度学习新特性全面解析与DeepSeek大模型集成开发

4、Transformer模型工作原理(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)YOLO模型的工作原理(从传统目标检测到基于深度学习的目标检测、从“两步法”的R-CNN到“一步法”的YOLO、YOLO模型的演化历史)7、ViT模型(提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化。

2025-07-23 10:42:44 426

原创 最新AI与Python在地球科学多源数据交叉融合中的前沿技术应用

核心内容包括AI技术在时空数据处理、多源数据融合、预测模型构建等方面的应用,涵盖时间序列分析、空间统计建模、遥感影像解译与生态系统模拟等关键领域。2、无监督学习:聚类(K-means、DBSCAN、层次聚类)、降维(PCA、t-SNE)1、监督学习:回归与分类算法(线性模型、支持向量机、随机森林、梯度提升树、深度学习)3、主要数据源:NASA、NOAA、ESA、Copernicus、中国气象局等。1、常见地球科学数据类型:站点观测、格点数据、再分析数据、遥感影像、模式输出。

2025-07-23 10:31:41 463

原创 扎根理论分析软件NVivo原理与技术应用

扎根理论的研究者来自广泛的研究领域,例如社会工作、护理、医药、综合医疗保健、教育、管理和商业。对于扎根理论本质和实践的研究引发了知名学者和研究新手的日益关注。重要的是,不用软件去完成这类研究会很难发现数据中的联系,很难找到能够为您提供优势的新见解。它是为了帮助您整理、分析和找到对非结构化或定性数据(例如:采访、开放式调查回答、文章、社交媒体和网页内容)的深刻见解而设计的。它还提供能够让您以更为有效的方式问关于数据的问题的工具。多种类型数据的处理:图片、音频、视频等。扎根理论在研究领域的定位;

2025-07-22 10:41:10 326

原创 Surfer与Voxler数据处理及可视化实践技术应用

Surfer和Voxler分别是美国Golden Software 公司开发的用于二维和三维数据可视化软件,具有强大的数据处理和插值功能,软件主要应用于气象、环境和地质(以及生物、医学等)等领域。此外,软件不断更新,增加了许多高级功能,如对激光、雷达扫描的点云数据(point cloud)支持等。1.相关图件的自动绘制(数据离散插值,2D等值线、散点图、矢量图、剖面图、3D等值面、地表分水岭);2.Voxler绘图的插值设置,属性设置(坐标轴,图例,标注等)以及后处理(切片,输出数据和图形);

2025-07-22 10:22:31 466

原创 R语言的分位数回归实践技术高级应用

由于其基本假设的限制,包括线性回归及广义线性回归在内的各种常见的回归方法都有三个重大缺陷:(1)对于异常值非常敏感,极少量的异常值可能导致结果产生巨大的误差;(2)对数据的分布有着较为苛刻的要求,如果数据不符合指定的分布,结果同样是不可信的;分位数回归的出现较好的解决了第(1)和第(3)个问题,对不同分布数据也表现非常好的稳定性。分位数回归是一种较新的回归技术,在实践中与普通的线性回归有很大区别,在理论上比线性回归复杂很多。4.线性回归的推广与分位数函数。2.分位数回归结果的解释。3.贝叶斯分位数回归。

2025-07-21 11:12:35 349

原创 如何使用python网络爬虫

由于网页内容、结果和反爬虫机制的不断更新,拥有一段爬虫程序并不是一劳永逸,而需要针对不同网页及时更新,而掌握爬虫的关键技术是在各种复杂网页中成功爬取数据和甚至成为爬虫工程师的基础。承载的价值不断提高,大数据的应用范围不断地扩大,已经渗透到自然科学和社会科学的多个领域,为学科发展和科学研究提供了巨大的发展机遇。时至今日,大量的公共资源和公开数据集以各种形式分享在互联网上,如何快速批量地获取海量公共资源数据决定了科研的效率。4)案例:使用五种不同解析技术爬取经济、天气、土壤、品种大数据。

2025-07-21 11:11:44 255

原创 基于无人机多光谱-点云融合的生态三维建模与碳储量/生物量/LULC案例实战

过去十年,厘米级空间分辨率、十余个窄波段的多光谱传感器与轻量级激光雷达共同下沉至科研团队与工程单位,使得冠层三维形态、叶面积指数、生物物理变量乃至碳储密度的大规模、可重复估算成为可能。5、成果图:生物量热力图、预测 vs 实测残差图LSTM、GRU、Prophet、XGBoost等时序建模。4、基于Python的统计分析:点云密度热力图、空洞识别、误差地图。6、Python栅格/矢量预处理:投影、裁剪、掩膜、格式转换。3、模型构建:随机森林、XGBoost、SVM、线性回归。

2025-07-19 16:26:30 839

原创 AI辅助Python-ArcGIS分析核心技术:从站点到区域的蒸散发与植被生产力估算实践应用

随着AI技术的发展,大语言模型如ChatGPT、DeepSeek、豆包等在数据分析、代码生成和复杂问题求解领域展现出强大的辅助能力,正深刻重塑生态水文与双碳研究的技术范式。传统蒸散发(ET)与植被总初级生产力(GPP)估算依赖 Penman-Monteith 等经典模型,但在多源异构数据整合(如 FLUXNET站点观测、GLASS 遥感数据)、区域尺度空间分析及高频数据处理中,面临人工编码效率低、模型参数调试复杂等挑战。1)区域GPP产品介绍(MODIS GPP、FLUXCOM、SIF-GPP等)

2025-07-19 10:30:13 627

原创 AI+Python赋能!长时序植被遥感动态分析全攻略:从物候提取到生态评估

从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT 、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势。GDAL库的介绍、安装与应用示例(多种栅格数据格式、数据裁剪、重投影以及统计分析等)湿度(WET)、绿度(NDVI)、热度(LST)和干度(NDBSI)等生态指标计算。

2025-07-19 10:29:38 256

原创 基于现代R语言【Tidyverse、Tidymodel】的机器学习方法

机器学习已经成为继理论、实验和数值计算之后的科研“第四范式”,是发现新规律,总结和分析实验结果的利器。机器学习涉及的理论和方法繁多,编程相当复杂,一直是阻碍机器学习大范围应用的主要困难之一,由此诞生了Python,R,SAS,STAT等语言辅助机器学习算法的实现。在各种语言中,R语言以编程简单,方法先进脱颖而出,本次机器学习基于现代R语言,Tidyverse,Tidymodel语法。

2025-07-18 11:18:25 331

原创 基于R语言的极值统计学及其在相关领域中的实践技术应用

受到气候变化、温室效应以及人类活动等因素的影响,自然界中极端高温、极端环境污染、大洪水和大暴雨等现象的发生日益频繁;研究此类极端现象需要新的统计学方法,该类统计学的理论和方法都与传统的基于高斯分布的统计学模型有极大的不同。极值统计学就是专门研究自然界和人类社会中很少发生,然而发生之后有着巨大影响的极端现象的统计建模及分析方法;在水文、气象、环境、生态、保险和金融等领域都有着广泛的应用。为了帮助研究者更好的应用极值统计理论研究课题,开展基于R语言的极值统计学课程。2.协变量的极值统计模型及极值回归。

2025-07-18 11:18:00 220

原创 R语言piecewiseSEM结构方程模型在生态环境领域实践技术应用

结构方程模型(Sructural Equation Modeling,SEM)可分析系统内变量间的相互关系,并通过图形化方式清晰展示系统中多变量因果关系网,具有强大的数据分析功能和广泛的适用性,是近年来生态、进化、环境、地学、医学、社会、经济等众多领域应用十分广泛的统计方法。专题01、R/Rstudio简介及入门 【提供视频、教材、相关案例数据代码】(2) R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等。(3) R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)

2025-07-18 10:55:09 898

原创 基于R、Python的Copula变量相关性分析及AI大模型应用

在工程、水文和金融等各学科的研究中,总是会遇到很多变量,研究这些相互纠缠的变量间的相关关系是各学科的研究的重点。虽然皮尔逊相关、秩相关等相关系数提供了变量间相关关系的粗略结果,但这些系数都存在着无法克服的困难。例如,皮尔逊相关系数只能反映变量间的线性相关,而秩相关则更多的适用于等级变量。大多数情况下变量间的相关性非常复杂,而且随着变量取值的变化而变化,而这些相关系数都是全局性的,因此无法提供变量间相关性变化的细节;更严重的是这些系数只提供了数值,对于变量间相关的具体结构和函数一无所知。

2025-07-18 10:53:35 310

原创 陆面生态水文模拟与多源遥感数据同化的实践技术应用

基于完整的单站模拟流程,选择课程示例站点之外的一个站点,完成数据下载、变量提取、格式转换、数据编译、模型参数设定、模型运行、结果提取与导出、结果可视化等操作。基于完整的区域模拟流程,选择课程示例区域之外的一个区域,完成数据下载、变量提取、格式转换、数据编译、模型参数设定、模型运行、结果提取与导出、结果可视化等操作。从虚拟机出发,逐步讲解Noah-MP模型运行所需的linux环境的搭建、intel编译器的安装与配置、必要软件的下载与安装、模型构建与编译等内容,细化步骤、逐指令讲解。

2025-07-16 17:07:08 891

原创 AI与PLUS-InVEST模型的土地利用多情景优化及生态系统服务智能模拟研究

聚焦的 PLUS 模型,内嵌 Markov 链与多类型随机斑块种子 CA 模型,结合 AI 数据处理与参数优化技术,可精准模拟不同政策情景下土地利用演变的斑块级细节,量化其对产水、碳储量、生境质量等生态服务的潜在影响。文本数据处理:AI可以帮助提取文献、报告和专家意见等文本数据的关键信息、自动化文献综述、提取数据点以及将复杂的技术文本转化为简洁易懂的内容。情景分析的沟通与解释:通过AI生成的自然语言报告,更清楚地理解不同情景下生态系统服务的变化,帮助决策者做出更加科学的决策。

2025-07-16 17:05:20 845

原创 WOFOST模型与PCSE模型实践

作物本身的生长发育是一个非常复杂的过程,因此在利用作物模型模拟作物生长过程中涉及的输入参数较多,主要包括气象、作物、土壤、田间管理参数等,在模型参数敏感性分析的基础上,结合实验区实际情况,对敏感性较高的参数进行定标,参数标定部分可参阅文献和网站等资料。参数是包括作物的物候学参数、同化和呼吸特征参数以及同化物分配到植物器官的参数等,这些参数保存在安装目录...\WCC\CROPD,在模型控制中心可以通过选择该作物调用该文件进行模拟。根据气象数据、土壤属性和农田管理实践,模拟农作物的生长和水分需求。

2025-07-15 14:09:44 596

原创 震惊!遥感+AI模型精准预测产量,农业估产误差直降90%!

但是,当作物生长模型从单点研究发展到区域尺度应用时,由于空间尺度增大而出现的地表、近地表环境非均匀性问题,导致模型中一些宏观资料的获取和参数的区域化方面存在很多困难,模型模拟结果也会存在很大的不确定性,而遥感信息在很大程度上可以帮助作物生长模型克服这些不足。作物生长模型能够利用环境因素模拟作物生长过程,揭示作物生长发育的原因与本质。随着科学技术发展和农业应用需求的驱动,数据同化方法将遥感数据与作物生长模型相结合,监测作物长势及预测作物产量,是当前农业信息技术应用研究的重要内容和发展趋势之一。

2025-07-15 13:57:27 431

原创 PROSAIL模型在植被参数遥感反演中的应用与实现

传统的地面实测方法能够得到比较准确的植被参数(如叶面积指数、覆盖度、生物量、叶绿素、干物质、叶片含水量、FPAR等),但其获取信息有限,难以满足大范围提取植被参数的需求,尤其在异质地表区域。遥感技术的发展为植被生长状态及动态监测提供了重要的技术手段,与传统地面实测方法不同,遥感把传统的“点”测量获取的有限代表性信息扩展为更加符合客观世界的“面”信息(即区域信息),且不会对生态系统造成破坏,能够长期、动态、连续地估算植被参数,在区域或全球尺度植被参数估算中具有不可替代的优势。四维变分代价函数构建。

2025-07-14 14:17:15 769

原创 植被参数遥感反演算法及生态模型数据同化研究(Python实现)

遥感技术的发展为植被生长状态及动态监测提供了重要的技术手段,与传统地面实测方法不同,遥感把传统的“点”测量获取的有限代表性信息扩展为更加符合客观世界的“面”信息(即区域信息),且不会对生态系统造成破坏,能够长期、动态、连续地估算植被参数,在区域或全球尺度植被参数估算中具有不可替代的优势。随着科学技术的发展和生态文明建设的需要,借助遥感数据反演植被参数,可为生态系统健康评价提供关键的数据支持,并且植被参数遥感反演是当前遥感应用研究的重要内容之一,也是国际遥感领域的热点研究方向。模型参数敏感性分析?

2025-07-14 14:16:13 882

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除