关于LSTM实现长短期记忆功能问题

本文详细介绍了LSTM如何通过遗忘门、更新门和输出门实现长短期记忆功能,解释了在网络中如何保存和更新记忆,以及如何选择激活函数以优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2019-09-07 22:01:45

问题描述:LSTM是如何实现长短期记忆功能的?

问题求解

与传统的循环神经网络相比,LSTM仍然是基于当前输入和之前的隐状态来计算当前的隐状态,只不过对内部的结构进行了精心的设计,加入了更新门,遗忘门和输出门这三个门和一个内部记忆单元。

在一个训练好的网络中,当输入的序列中没有重要的信息时,LSTM的遗忘门的数值接近于1,更新门的数据接近于0,此时过去的记忆会被保存,从而实现了长期的记忆功能;当输入的序列中出现了重要的信息时,LSTM应该把其存入记忆时,此时更新门的数值将接近于1;当输入的信息中出现了重要的信息,并且该信息意味着之前的记忆不再重要的时候,输入门的数值接近于1,遗忘门的数值接近于0,这样旧的记忆被遗忘,新的重要的信息被记忆。经过这样的设计,整个网络更容易学习到序列之间的长期依赖。

关于激活函数的选择,在LSTM中,更新门,遗忘门,输出门的激活函数选择的是Sigmoid函数;在生成候选记忆的时候,使用的双曲正切函数Tanh作为激活函数。

Sigmoid的输出介于0 - 1之间,符合门控的物理含义,且当输入较大/较小的时候,输出会非常接近1 / 0,从而保证了门控的开和关。

在生成候选记忆的时候,使用Tanh函数,是因为其输出在-1 - 1之间,这与大多数场景下特征分布是0中心的吻合。此外,Tanh函数在输入为0附近相比Sigmoid函数有更大的梯度,通常会帮助模型收敛的更快。

转载于:https://www.cnblogs.com/hyserendipity/p/11483355.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值