PyTorch 图像:06.使用ONNX将模型转移至Caffe2和移动端

本教程介绍了如何使用ONNX将PyTorch中的超分辨率模型转换为ONNX格式,并在Caffe2中运行。教程涵盖了模型导入、训练、导出、在Caffe2中验证以及在移动设备上执行的步骤,展示了深度学习模型的跨平台迁移过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用ONNX将模型转移至Caffe2和移动端

在本教程中,我们将介绍如何使用 ONNX 将 PyTorch 中定义的模型转换为 ONNX 格式,然后将其加载到 Caffe2 中。一旦进入 Caffe2,我们就可以运行模型来仔细检查它是否正确导出,然后我们展示了如何使用 Caffe2 功能(如移动导出器)在移动设备上执行模型。

在本教程中,您需要安装onnx和Caffe2。您可以使用pip install onnx来获取 onnx。

注意:本教程需要 PyTorch master 分支,可以按照这里说明进行安装。

1.引入模型

# 一些包的导入
import io
import numpy as np

from torch import nn
import torch.utils.model_zoo as model_zoo
import torch.onnx

1.1 `SuperResolution`模型

超分辨率是一种提高图像、视频分辨率的方法,广泛用于图像处理或视频剪辑。在本教程中,我们将首先使用带有虚拟输入的小型超分辨率模型。

首先,让我们在 PyTorch 中创建一个SuperResolution模型。这个模型直接来自 PyTorch 的例子,没有修改:

# PyTorch中定义的Super Resolution模型
import torch.nn as nn
import torch.nn.init as init

class SuperResolutionNet(nn.Module):
    def __init__(self, upscale_factor, inplace=False):
        super(SuperResolutionNet, self).__init__()

        self.relu = nn.ReLU(inplace=inplace)
        self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
        self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
        self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
        self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
        self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

        self._initialize_weights()

    def forward(self, x):
        x = self.relu(self.conv1(x))
        x = self.relu(self.conv2(x))
        x = self.relu(self.conv3(x))
        x = self.pixel_shuffle(self.conv4(x))
        return x

    def _initialize_weights(self):
        init.orthogonal_(self.conv1.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv2.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv3.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv4.weight)

# 使用上面模型定义,创建super-resolution模型 
torch_model = SuperResolutionNet(upscale_factor=3
<think>嗯,用户想了解如何将PyTorch.pt模型转换为ONNX格式。首先,我需要回忆PyTorchONNX的基本步骤。记得PyTorch有个torch.onnx模块,可以用来导出模型。用户可能已经安装了PyTorch,但可能需要确认版本是否支持ONNX导出。 接下来,可能需要先加载.pt文件里的模型。用户可能需要先定义模型结构,然后加载参数,或者模型是直接保存的整个模型。这里需要分情况说明。例如,如果模型是用torch.save(model.state_dict(), 'model.pt')保存的,那需要先实例化模型类,再加载参数。如果是保存的整个模型,可能直接加载就行。 然后,导出ONNX的关键函数是torch.onnx.export。需要提供模型、输入样例、输出路径,还有输入输出的名称。可能需要提醒用户设置动态轴,尤其是如果输入尺寸是动态的。比如,在导出时指定input_namesoutput_names,以及dynamic_axes参数来处理不同批处理大小或可变尺寸的输入。 另外,用户可能需要处理模型中的自定义操作,比如PRelu或其他不常见层,这时候需要确保这些操作在ONNX中有对应的支持,或者需要自定义处理。比如在示例引用中提到的PRelu转换问题,可能需要调整权重形状以适应目标框架(比如Caffe)的需求,这可能在导出到ONNX时就要注意。不过ONNX本身应该支持PRelu,但可能在转换到其他格式时需要额外处理。不过用户当前的问题只是到ONNX,可能这部分暂时不需要深入,但可以提到可能需要注意自定义层的兼容性。 另外,用户可能需要验证导出的ONNX模型是否正确。可以推荐使用onnxruntime进行推理测试,或者用onnx.checker检查模型的有效性。这一步很重要,确保导出的模型没有错误。 可能还需要注意PyTorchONNX的版本兼容性。比如某些版本的PyTorch可能需要特定版本的ONNX库,或者某些操作符在不同版本中的支持情况不同。建议用户确保环境正确,并参考官方文档。 最后,用户的应用场景可能是移动端部署或其他需要ONNX格式的环境,比如转成Caffe或TensorRT等。所以转换后的步骤可能涉及进一步转换,但当前问题只到ONNX。 总结步骤应该是:安装依赖、加载模型、准备输入、导出ONNX、验证模型。然后示例代码可能需要覆盖这些步骤,并提醒注意事项,如动态轴、自定义操作、输入样例的正确性等。同时,用户提供的引用内容中提到了处理PRelu层时需要调整权重形状,这可能是在后续转换到Caffe时的步骤,但导出到ONNX时可能也需要确保该层正确导出,可能需要检查ONNX的PRelu实现是否符合预期。 可能需要生成相关问题,比如如何处理动态输入尺寸,如何验证ONNX模型,或者如何处理不支持的操作符。这些相关问题可以帮助用户进一步解决可能遇到的问题。</think>### 如何将PyTorch .pt模型转换为ONNX格式? #### 步骤详解 1. **环境准备** - 确保已安装PyTorchONNX库: ```bash pip install torch onnx ``` - 若需验证ONNX模型,可安装`onnxruntime`: ```bash pip install onnxruntime ``` 2. **加载PyTorch模型** - 如果模型通过`model.state_dict()`保存,需先定义模型类再加载参数: ```python import torch model = YourModelClass() # 替换为实际模型类 model.load_state_dict(torch.load("model.pt")) model.eval() # 设置为推理模式 ``` - 如果模型直接保存为完整对象(`torch.save(model, "model.pt")`),可直接加载: ```python model = torch.load("model.pt") model.eval() ``` 3. **定义输入样例** - 生成符合模型输入尺寸的虚拟数据(例如图像输入为$1 \times 3 \times 224 \times 224$): ```python dummy_input = torch.randn(1, 3, 224, 224) # 替换为实际输入维度 ``` 4. **导出ONNX模型** - 使用`torch.onnx.export`函数: ```python torch.onnx.export( model, dummy_input, "model.onnx", input_names=["input"], # 输入节点名称 output_names=["output"], # 输出节点名称 dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}} # 支持动态批处理 ) ``` - **关键参数说明**: - `dynamic_axes`:指定动态维度(如可变批处理大小)[^1]。 5. **验证ONNX模型** - 使用`onnx.checker`验证格式正确性: ```python import onnx onnx_model = onnx.load("model.onnx") onnx.checker.check_model(onnx_model) ``` - 使用`onnxruntime`推理测试: ```python import onnxruntime sess = onnxruntime.InferenceSession("model.onnx") inputs = {"input": dummy_input.numpy()} outputs = sess.run(None, inputs) ``` #### 注意事项 - **自定义操作**:若模型包含ONNX不支持的操作(如特定激活函数),需通过自定义算子或替换兼容层实现。 - **输入/输出名称**:确保`input_names``output_names`与模型定义一致,否则后续转换(如Caffe/NNIE)可能失败。 - **动态维度**:若输入尺寸可变(如不同分辨率图像),需在`dynamic_axes`中明确指定。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值