OW-ORF(最优权重一类随机森林)

文章提出了一种针对无线传感器网络中异常检测的分布式方法,利用无监督的最优加权随机森林算法。为解决有限计算和连接问题,设备通过共享决策树模型而非原始数据进行协作。同时,通过动态调整模型权重来应对环境和设备的不可靠性,实现对异常的实时响应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

motivation

无线传感器网络中的异常检测面临以下挑战:

  1. 有限的计算和连接:
    为了提高无线传感器网络的可持续性,设备的处理单元(如果有的话)通常具有有限的能效计算能力,并且设备之间的通信应该受到限制以实现节能。
  2. 环境和网络拓扑的动态性
    由于软件、硬件和环境因素的不同,设备具有不同的特性,反过来,设备也具有不同的信任级别。在环境和拓扑随时间变化的无线传感器网络中,当允许(附近)设备之间进行信息交换时,设备可能容易受到风险的影响。
  3. 需要对异常采取实时行动
    虽然异常可能来自内在因素或外在因素的变化,但设备需要对异常做出现场决策,以便实时采取适当的行动

创新点

为了解决有限的计算和连接问题,我们的方法是分布式的,在这种方法中,设备通过在必要时相互共享其模型而不是数据来协同做出原位决策。

为了解决设备和环境的不可靠性质,我们的方法使用无监督的最优加权机制来抵御信息交换的风险,该机制在没有监督的情况下确定模型的有用性。

method

  1. 一类随机森林
    随机森林(random tree)是将多棵树集成的一种算法。它的基本单元是决策树。每棵决策树都是一个分类器(假设现在针对的是分类问题),那么对于一个输入样本,N棵树会有N个分类结果。而随机森林集成了所有的分类投票结果,将投票次数最多的类别指定为最终的输出。
    在这里插入图片描述

在无线传感器网络中的集中异常检测中,每个设备都将其数据传输到执行异常检测的设备。从所有设备收集的数据实例都是可用的,并且可以构建全局模型。然而,无线传感器网络中的分布式异常检测要求每个设备做出其本地决策。
即它们只交换树模型而不是数据样本,分布式随机森林只与邻居交换模型来建立局部模型集,这对于异常检测中的局部建模特别有用
2. 最优加权随机森林
我们首先为局部决策树模型分配更大的权重,这些模型过去和现在都是有用的。对于从其他设备新交换的模型,初始权重以相对较小的值均匀分配,使得初始权重集有利于局部模型。
![[Pasted image 20230627114322.png]]

  1. 如果新数据到达本地模型就进行增量学习,更新树模型。
  2. 如果是来自附近设备的新模型,就得到新模型加入到森林中
  3. 然后就如果新交换的决策树模型给出了与大多数类似的预测,则集合预测的不确定性降低,因此,模型的权重增加。另一方面,如果新交换的决策树模型针对大多数给出了一致或相反的预测,则集合预测的不确定性增加,而模型的权重降低。
  4. 然后更新权重信息,剔除最小权重的模型。

论文连接:[1] Tsou Y L , Chu H M , Li C ,et al.Robust Distributed Anomaly Detection Using Optimal Weighted One-Class Random Forests[C]//IEEE International Conference on Data Mining.IEEE, 2018.DOI:10.1109/ICDM.2018.00171.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值