motivation
- 利用知识蒸馏的思想,训练一个student网络,使得这个网络尽可能的和teacher网络,在正样本数据集上有着相同的表达能力。
- 由于在异常样本上,student网络没有参与训练,那么进行特征提取的效果相对于teacher网络会存在比较大的差异,利用这种FeatureMap上的差异可以实现基于正常样本的异常检测。
- 原有的Teacher-Student模型的缺点:转移知识的不完全性和处理缩放的效率低下
创新点
- 多尺度特征匹配:该方法通过整合多尺度特征匹配策略,使得学生网络能够从特征金字塔接收多层次知识,从而检测各种尺寸的异常。
- 一步式知识转移:通过将预训练的强大模型(教师)的知识转移到具有相同架构的学生网络中,该方法尽可能多地保留了关键信息,提高了检测的准确性和效率。
- 高效的推理速度:该方法不仅在准确性上取得了显著的成果,而且在推理速度上也大幅度超过了现有的技术,至少比最新的模型快几十倍。
方法
-
教师模型的选择与预训练:
- 教师模型是在大规模图像分类数据集上预训练的深度神经网络,例如ImageNet。这个模型已经学习到了丰富的特征表示,能够捕捉到正常数据的内在分布。
-
学生模型的结构:
- 学生模型具有与教师模型相同的网络架构,但参数较少,目的是为了减少模型的复杂性和计算成本,使其更适合实时或资源受限的环境。
-
特征金字塔匹配:
- 该方法使用多尺度特征匹配策略,即在不同的特征层级