Hessian矩阵正定与函数凹凸性的关系

1. 从矩阵变换的角度

首先半正定矩阵定义为: X^TMX \geq 0
其中X 是向量,M 是变换矩阵

我们换一个思路看这个问题,矩阵变换中,MX代表对向量 X进行变换,我们假设变换后的向量为Y,记做Y=MX。于是半正定矩阵可以写成:
X^TY \geq 0

这个是不是很熟悉呢? 他是两个向量的内积。 同时我们也有公式:

cos(\theta) = \frac{X^TY}{||X||* ||Y||}

||X||, ||Y||代表向量 X,Y的长度,\theta是他们之间的夹角。 于是半正定矩阵意味着cos(\theta)\geq 0, 这下明白了么?

正定、半正定矩阵的直觉代表一个向量经过它的变化后的向量与其本身的夹角小于等于90度。

2.考虑矩阵的特征值。
若所有特征值均不小于零,则称为半正定。

若所有特征值均大于零,则称为正定。

 

3. 黑塞矩阵的正定性

Hessian矩阵的正定性在判断优化算法可行性时非常有用,简单地说,黑塞矩阵正定,则

1. 函数的二阶偏导数恒 > 0

2. 函数的变化率(斜率)即一阶导数始终处于递增状态

3. 函数为凸

因此,在诸如牛顿法等梯度方法中,使用黑塞矩阵的正定性可以非常便捷的判断函数是否有凸性,也就是是否可收敛到局部/全局的最优解。

原文链接:https://www.zhihu.com/question/20822481

https://blog.csdn.net/qq_39521554/article/details/78895869

<think>好的,我现在需要回答用户关于如何在Mathematica中计算Hessian矩阵的问题。首先,我得回忆一下用户提供的引用内容。根据引用[4],用户提到Mathematica可以求解二元变量的目标函数Hessian矩阵,并判断凹凸,其中Hessian矩阵负定时,一阶顺序主子式小于0,二阶大于0。这说明用户可能已经了解了一些基础,但需要具体操作步骤。 接下来,我应该先确定Hessian矩阵的基本定义。Hessian矩阵是二阶偏导数组成的矩阵,用于描述多元函数的局部曲率。在Mathematica中,计算Hessian矩阵可能需要用到求导的函数。比如,D函数可以用来计算偏导数,或者直接使用内置的Hessian函数? 根据引用[3]中的雅可比矩阵Hessian矩阵可以看作是梯度向量的雅可比矩阵,也就是二阶导数矩阵。因此,在Mathematica中,可能有两种方法:一是手动计算每个二阶偏导数,组合成矩阵;二是使用内置的Hessian函数。 我需要检查Mathematica是否有内置的Hessian函数。根据我了解,Mathematica在版本10之后引入了HessianMatrix函数吗?或者可能需要使用D函数两次。比如,对于函数f,变量列表vars,Hessian矩阵可以通过D[f, {{vars}, 2}]来计算。例如,假设函数是f(x,y),则Hessian矩阵为: D[f, {{x, y}, 2}] 这样是否正确?或者需要分别计算每个二阶导数,比如D[f, x, x], D[f, x, y], D[f, y, x], D[f, y, y],然后组成矩阵。这两种方法是否等效? 根据用户提供的引用[5]中的Matlab代码,他们手动计算了二阶偏导数,比如Dxx,Dyy,Dxy。所以在Mathematica中,用户可能需要类似的方法,或者更简便的方式。 另外,用户引用[4]提到使用Mathematica求解二元变量的Hessian矩阵判断凹凸,所以可能需要完整的步骤:定义函数,计算Hessian,然后分析顺序主子式的符号。 所以,步骤大概是: 1. 定义目标函数,例如f[x_, y_] := ... 2. 计算Hessian矩阵,使用D函数或者内置函数。 3. 分析矩阵正定,比如计算各阶主子式的符号。 例如,对于二元函数Hessian矩阵是2x2的矩阵,第一顺序主子式是H[1,1],即对x的二阶偏导,第二顺序主子式是整个矩阵的行列式。根据引用[4],凹函数需要Hessian负定,即一阶主子式<0,二阶主子式>0。 现在需要具体展示如何在Mathematica中实现这些步骤。例如,用户可能需要代码示例,比如: 定义函数: f[x_, y_] := x^3 + 2*x*y + y^2 计算Hessianhessian = D[f[x, y], {{x, y}, 2}] 然后计算顺序主子式: FirstPrincipalMinor = hessian[[1, 1]] SecondPrincipalMinor = Det[hessian] 然后根据符号判断凹凸。 或者是否有更简便的方式,比如使用函数HessianMatrix?可能在某些版本中需要加载包吗?例如,在Mathematica中,可能需要使用`<<VectorAnalysis`包中的Hessian函数,但可能新版已经内置了相关功能。 需要确认当前Mathematica版本中的正确方法。例如,在较新的版本中(比如12.0以上),可以直接使用D函数计算二阶导数矩阵。例如: vars = {x, y}; hessian = D[f[x, y], {vars, 2}] 这会生成一个2x2的矩阵,其中元素是二阶偏导数。 然后,判断凹凸,需要检查各阶主子式的符号。对于二元函数,一阶主子式即第一个对角元素,二阶是行列式。根据引用[4],如果Hessian负定,则一阶主子式<0,二阶>0;如果是正定,则一阶>0,二阶>0。 此外,用户可能还需要如何将这些步骤整合到一个完整的代码块中,方便直接复制使用。例如: f[x_, y_] := x^2 + y^2; (* 示例函数 *) hessian = D[f[x, y], {{x, y}, 2}]; Print["Hessian矩阵为:", MatrixForm[hessian]]; Print["一阶顺序主子式:", hessian[[1, 1]]]; Print["二阶顺序主子式(行列式):", Det[hessian]]; 然后根据输出结果判断凹凸。 可能还需要处理符号计算的情况,比如当函数含有符号变量时,如何得到解析表达式。例如,如果函数是f(x,y) = ax² + bxy + cy²,其中a、b、c是符号参数,这时候Hessian矩阵会包含这些符号变量,用户需要知道如何处理这种情况。 根据引用[1]中的内容,SymPy通过符号计算解析Hessian矩阵,而Mathematica同样具备强大的符号计算能力,所以在Mathematica中处理符号参数应该没有问题。 总结步骤: 1. 定义目标函数,可以是具体数值或符号表达式。 2. 使用D函数计算Hessian矩阵。 3. 分析顺序主子式的符号以判断正定凹凸。 现在需要将这些步骤以清晰的中文回答呈现,并给出示例代码,确保用户能够理解并应用。同时,根据用户的要求,生成相关问题。 最后,需要引用相关的引用内容,特别是引用[4]关于Mathematica中Hessian矩阵凹凸判断的部分,以及引用[3]关于雅可比矩阵Hessian关系。</think>在Mathematica中计算Hessian矩阵可以通过符号求导实现,以下是具体步骤和示例: --- ### **1. 计算Hessian矩阵的方法** Hessian矩阵是目标函数$f(x_1, x_2, \dots, x_n)$的二阶偏导数组成的对称矩阵。在Mathematica中,可以直接使用`D`函数或`HessianMatrix`(需加载`VectorAnalysis`包)进行计算。 #### **方法一:使用`D`函数** 假设目标函数为$f(x, y)$,其Hessian矩阵计算如下: ```mathematica f[x_, y_] := x^3 + 2*x*y + y^2; hessian = D[f[x, y], {{x, y}, 2}] (* 计算二阶导数矩阵 *) ``` 输出结果: $$ \begin{pmatrix} 6x & 2 \\ 2 & 2 \\ \end{pmatrix} $$ #### **方法二:使用`HessianMatrix`(需加载包)** ```mathematica <<VectorAnalysis`; HessianMatrix[f[x, y], {x, y}] ``` --- ### **2. 判断函数凹凸** 根据Hessian矩阵正定判断凹凸[^4]: - **凹函数**:Hessian矩阵负定(所有顺序主子式交替符号,一阶$<0$,二阶$>0$)。 - **凸函数**:Hessian矩阵正定(所有顺序主子式$>0$)。 **示例代码**: ```mathematica (* 计算顺序主子式 *) firstPrincipal = hessian[[1, 1]] (* 一阶顺序主子式 *) secondPrincipal = Det[hessian] (* 二阶顺序主子式 *) (* 判断凹凸 *) If[firstPrincipal < 0 && secondPrincipal > 0, Print["函数在该区域为凹函数"], Print["函数非凹或需要进一步分析"] ] ``` --- ### **3. 完整示例** 假设目标函数为$f(x, y) = -x^2 - y^2$: ```mathematica f[x_, y_] := -x^2 - y^2; hessian = D[f[x, y], {{x, y}, 2}]; Print["Hessian矩阵:", MatrixForm[hessian]]; Print["一阶主子式:", hessian[[1,1]], ",二阶主子式:", Det[hessian]]; If[hessian[[1,1]] < 0 && Det[hessian] > 0, Print["函数为凹函数"], Print["函数非凹"] ] ``` 输出: ``` Hessian矩阵:(-2 0 0 -2) 一阶主子式:-2,二阶主子式:4 函数为凹函数 ``` --- ### **4. 符号参数的处理** 若目标函数含符号参数(如$f(x, y) = ax^2 + bxy + cy^2$),Mathematica仍可解析计算: ```mathematica f[x_, y_] := a x^2 + b x y + c y^2; hessian = D[f[x, y], {{x, y}, 2}] ``` 输出: $$ \begin{pmatrix} 2a & b \\ b & 2c \\ \end{pmatrix} $$ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值