最优化理论-统计学4

目录:

  1. 偏态(Skewness)
    • 定义
    • 分类与性质
    • 公式与解析
    • 示例
    • 偏态分析
  2. 峰态(Kurtosis)
    • 定义
    • 分类与性质
    • 公式与解析
    • 示例
    • 峰态分析
  3. 偏态与峰态综合分析
    • 定义与关系
    • 公式与示例
  4. 顺序统计量(Order Statistics)
    • 定义
    • 分布函数
    • 推导过程
    • 示例
  5. 经验分布函数(Empirical Distribution Function, EDF)
    • 定义
    • 公式
    • 特性与应用
  6. 顺序统计量的经验分布函数
    • 定义
    • 表达式与推导
    • 重复值的影响
  7. 顺序统计量和经验分布函数在去除噪声中的应用
    • 顺序统计量去噪方法
    • 实际应用

1. 偏态(Skewness)

定义

偏态(Skewness)是用于衡量分布的不对称性的一种统计量。它描述了分布相对于均值的不对称性,特别是分布的尾部形状。偏态反映了分布的偏斜方向,告诉我们数据集中于均值两侧时,哪一侧的数据更加倾向于“拉长”。

分类与性质

  1. 正偏态(右偏态)

    • 定义:正偏态表示分布的右尾较长,即数据的高值较为稀疏,但远离均值,极端值拉长了分布的右侧。
    • 特性:正偏态中,均值大于中位数,中位数大于众数。数据的大部分集中在分布的左侧。
    • 示例:如收入分布,大多数人收入集中在较低范围,而少数高收入者会拉长右尾。

    正偏态分布图

   |    /
   |   /
   |  /
   | /
   |/
   ----------------------
      ^
      中心向左
  1. 负偏态(左偏态)

    • 定义:负偏态表示分布的左尾较长,即数据的低值较为稀疏,极端值拉长了分布的左侧。
    • 特性:负偏态中,均值小于中位数,中位数小于众数。数据的大部分集中在分布的右侧。
    • 示例:如考试成绩,大部分学生得到较高分数,而少数低分学生拉长左尾。

    负偏态分布图

   |\
   | \
   |  \
   |   \
   |    \
   ----------------------
        ^
      中心向右
  1. 对称分布(无偏态)

    • 定义:对称分布没有偏态,数据分布在均值两侧对称,左尾和右尾长度相同。
    • 示例:正态分布就是一个无偏态的典型例子。

    对称分布图

     /\
    /  \
   /    \
  /      \
 -------------------
   对称分布

公式与解析

偏态系数的公式如下:

[
\text{Skewness} = \frac{E[(X - \mu)3]}{\sigma3}
]

其中:

  • (E[(X - \mu)^3]) 是数据与均值的三次偏差的期望,用于度量分布的偏斜方向。
  • (\sigma) 是数据的标准差,标准化数据集的偏差,使得不同尺度的数据可比。

解释

  • 偏态系数 (> 0):表示正偏态(右偏态),右尾较长。
  • 偏态系数 (< 0):表示负偏态(左偏态),左尾较长。
  • 偏态系数 (= 0):表示分布对称,没有偏态。

示例

假设有一组数据 (X = [2, 5, 6, 8, 10, 15, 100]),我们可以通过计算偏态系数来判断数据的偏斜情况。由于100这个值远离数据的其余部分,拉长了分布的右尾,偏态系数将会大于 0,表示正偏态。

计算代码示例(Python):

import numpy as np
from scipy.stats import skew

data = [2, 5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值