基于机器学习的网络入侵检测系统研究与实践
1. 入侵检测方法分类
入侵检测方法通常可分为以下几类:
- 基于误用或特征的入侵检测(Signature - based IDs) :依赖已知的流量数据来分析潜在的有害流量。
- 基于异常的入侵检测(Anomaly - based IDs) :查看网络流量模式,检测数据是否有效、错误或存在异常。主要用于检测未知的无关流量,能够检测出格式错误的IP数据包。
2. 相关研究工作
不同学者在入侵检测领域开展了多项研究:
|研究人员|研究内容|
| ---- | ---- |
|Buczak等|探讨数据挖掘和机器学习方法在网络安全入侵检测中的应用,指出因流量大,数据包处理可能无法达到流处理速度|
|Teodoro等|关注基于异常的网络入侵技术,提出统计、基于知识和机器学习方法,但未涵盖所有先进的机器学习方法|
|Ahsan等|开发了一种新型随机神经网络(RNN)用于实时认知系统设计,将RNN与遗传算法集成以实现实时决策|
|Jingping|研究基于支持向量机(SVM)的异常网络入侵检测,通过提取和优化训练特征,使用Kullback - Leibler(KL)散度和交叉相关训练SVM,最佳OSR为99.47%|
|Hinton|提出基于过滤特征工程的深度学习方法用于无线入侵检测系统,使用前馈深度神经网络(FFDNN)处理NSL - KDD数据集,证明FFDNN - IDS具有更高的准确性|