遥感数据聚类与无监督分类全解析
1. 引言
在处理遥感数据时,我们常常需要确定数据在光谱空间中的自然分组或光谱类别。虽然有时可以猜测给定信息类中的光谱类数量,但通常用户对数据在光谱空间中形成的不同单峰组数量了解甚少。高斯混合模型可用于此目的,但同时估计高斯分量的数量及其参数的复杂性使得该方法难以使用。聚类程序是一种实用的替代方法,已在许多领域中用于确定数据的固有结构。
2. 相似性度量和聚类标准
在聚类过程中,我们试图识别彼此相似的像素组。用于检查相似性的唯一实际属性是传感器记录的光谱测量值。因此,聚类意味着在光谱域中对像素进行分组,属于特定聚类的像素在光谱上是相似的。为了量化它们的光谱接近程度,需要设计一种相似性度量方法。
常见的相似性度量是光谱空间中的简单距离度量,最常遇到的是欧几里得距离($L_2$)和城市街区或曼哈顿距离($L_1$)。
- 欧几里得距离 :如果$x_1$和$x_2$是两个待检查相似性的像素的测量向量,它们之间的欧几里得距离为:
[d(x_1, x_2) = |x_1 - x_2| = \sqrt{(x_1 - x_2) \cdot (x_1 - x_2)} = \sqrt{(x_1 - x_2)^T (x_1 - x_2)} = \sqrt{\sum_{n = 1}^{N} (x_{1n} - x_{2n})^2}]
其中$N$是光谱分量的数量。
- 城市街区距离 :像素之间的城市街区($L_1$)距离是沿每个光谱维度的累积差异,类似于在矩形街道网格布局的城市中两个地点之间的行走距离,其计算公式为:
[d_