本文结构:
- 什么是 Language Model?
- 怎么实现?怎么应用?
cs224d Day 8: 项目2-用 RNN 建立 Language Model 生成文本
课程项目描述地址。
什么是 Language Model?
Language Model 是 NLP 的基础,是语音识别, 机器翻译等很多NLP任务的核心。
实际上是一个概率分布模型 P ,对于语言里的每一个字符串 S 给出一个概率 P(S) 。
怎么实现?怎么应用?
我们先训练一个语言模型,然后用它来生成句子。感兴趣的话可以去这里看完整代码。
1.问题识别:
我们要做的是,用 RNN 通过隐藏层的反馈信息来给历史数据 xt,xt−1,…,x1 建模。
例如,输入一个起始文本:’in palo alto’,生成后面的100个单词。
其中 Palo Alto 是 California 的一个城市。
2.模型:
语言模型:给了 x1, … , xt, 通过计算下面的概率,预测 xt+1:
模型如下:
其中参数:
h^t 是t时刻的隐藏层,e^t 是输入层,就是 one-hot 向量 x^t 与 L 作用后得到的词向量,H 是隐藏层转换矩阵,I 是输入层词表示矩阵,U 是输出层词表示矩阵,b1,b2 是 biases,这几个是我们需要训练的参数。
我们用 cross-entropy loss 来衡量误差,使之达到最小:
我们通过评价 perplexity 也就是下面这个式子,来评价模型的表现:
当我们在最小化 mean cross-entropy 的同时,也达到了最小化 mean perplexity 的目的,因为 perplexity 就是 cross entropy 的指数形式。具体推导参考
对 J 求在 t 时刻的 各参数的偏导:
RNN 在一个时间点的 模型结构 如下:
将模型展开3步得到如下结构:
关于 t 时刻的 J 对 t-1 时刻的参数 L,H,I,b1 求导:
接下来用 Adam potimizer 来训练模型,得到 loss 最小时的参数。
再用训练好的模型去生成文本。
3.文本生成的实现
- 一共迭代max epo