用 RNN 训练语言模型生成文本

本文介绍了如何使用RNN建立语言模型,通过训练预测文本序列,并详细阐述了模型结构、训练过程和文本生成的实现方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文结构:
  1. 什么是 Language Model?
  2. 怎么实现?怎么应用?

cs224d Day 8: 项目2-用 RNN 建立 Language Model 生成文本
课程项目描述地址。


什么是 Language Model?

Language Model 是 NLP 的基础,是语音识别, 机器翻译等很多NLP任务的核心。

参考:

实际上是一个概率分布模型 P ,对于语言里的每一个字符串 S 给出一个概率 P(S) 。


怎么实现?怎么应用?

我们先训练一个语言模型,然后用它来生成句子。感兴趣的话可以去这里看完整代码。

1.问题识别:

我们要做的是,用 RNN 通过隐藏层的反馈信息来给历史数据 xt,xt−1,…,x1 建模。

例如,输入一个起始文本:’in palo alto’,生成后面的100个单词。

其中 Palo Alto 是 California 的一个城市。

2.模型:

语言模型:给了 x1, … , xt, 通过计算下面的概率,预测 xt+1:

模型如下:

其中参数:

h^t 是t时刻的隐藏层,e^t 是输入层,就是 one-hot 向量 x^t 与 L 作用后得到的词向量,H 是隐藏层转换矩阵,I 是输入层词表示矩阵,U 是输出层词表示矩阵,b1,b2 是 biases,这几个是我们需要训练的参数。

我们用 cross-entropy loss 来衡量误差,使之达到最小:

我们通过评价 perplexity 也就是下面这个式子,来评价模型的表现:

当我们在最小化 mean cross-entropy 的同时,也达到了最小化 mean perplexity 的目的,因为 perplexity 就是 cross entropy 的指数形式。具体推导参考

对 J 求在 t 时刻的 各参数的偏导:

RNN 在一个时间点的 模型结构 如下:

将模型展开3步得到如下结构:

关于 t 时刻的 J 对 t-1 时刻的参数 L,H,I,b1 求导:

接下来用 Adam potimizer 来训练模型,得到 loss 最小时的参数。
再用训练好的模型去生成文本。

3.文本生成的实现
  • 一共迭代max epo
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值