卷积神经网络概述

卷积神经网络的概述

在处理图像识别的时候,最常用的一个深度学习方法就是使用 CNN,也就是卷积神经网络,其优点就在于可以通过使用较小的图像数据,进行深度学习。下面我们来介绍一下 CNN 的基本流程。

Input

对于图像,因为是无符号类型的数据,默认正数,所以我们使用 uint8 作为数据格式。Shape 我们前两个维度的数据我们可以任意定义,但默认的 channel是三层。

Filter

滤波器是 CNN 中不可缺少的一部分,滤波器的作用是在输入 Input 之后的第一层进行 CNN,提取 feature map。每个 feature map 会在之后进行叠加。feature 相当于是图形的特征值,比如,我们在识别一张图片的时候,很有可能值需要位置信息,而不需要特定的其他信息。feature 可以很好的帮我们规避多余的处理。

Stride

也可以理解为步数,我们会使用 window 类似于定义一个窗口大小,通过移动 (stride),来进行数据的提取,然后和 kernel 矩阵相乘,获得输出。

Padding

因为我们使用了 feature mapkernel相乘,很大程度上会降维,那可能会丢失边界的重要信息,这时候我们会设置 padding 来填充边界,以确保数据的完整性。

Output Shape

CNN 中很重要的一 part 是要会计算输出的 shape。比如,输入是 7*7 的 shape,filter 为 1, stride 为 2,padding 2,那输出的 shape 公式如下:
s h a p e = ( I n p u t S h a p e − F i l t e r S h a p e + 2 ∗ P a d d i n g ) / S t r i d e + 1 shape = (Input Shape- Filter Shape + 2 * Padding) / Stride+ 1 shape=(InputShapeFilterShape+2Padding)/Stride+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值