丨目录:
· 背景
· 价值衡量体系建设
· 模型技术探索
· 总结&展望
· 参考文献
▐ 背景
阿里妈妈品牌广告通过高品质的展示资源位为广告主提供优质营销服务,帮助广告主提升其在客群中的品牌心智,从而降低拉新复购成本,提升品牌影响力,增强市场竞争力。对于品牌广告投放,广告主除了对于曝光保量的诉求,也越来越关注投放效果的提升。从用户视角,用户对于不同广告的偏好程度存在差异,通过价值衡量可以为用户投放其感兴趣的广告,可以进一步提升消费者广告体验;从广告主视角,不同流量对于广告主的互动价值存在差异,所以可以在保量基础上尽可能将高价值的流量分配给对应的广告主,也间接促进了广告平台的良性发展。

▐ 价值衡量体系建设
我们从品牌广告基础价值出发,进行了流量价值衡量体系建设,逐步构建了多方位的品牌价值衡量方式和价值衡量模型。品牌广告价值衡量建设从最初的即时价值CTR逐步进行拓展,一方面以深度价值CVR进行延伸,另一方面以增量价值Uplift进行延伸,分别在深度价值CVR和增量价值Uplift方向进行了一系列探索工作。

即时价值CTR和深度价值CVR本质是相关关系建模,而增量价值Uplift实际上是从因果的视角进行刻画,对于广告业务来说,Uplift刻画的是广告投放为广告主带来的增量价值,对于同质性具有极高的要求。我们在实际应用场景为了保证Lift同质性,采用了对用户和广告主进行联合Hash分组的策略,但生产环境由于请求展现率问题仍难保证同质性,需要进行特别处理,相应的我们也总结沉淀了针对曝光偏差(同质性)的Uplift建模探索工作。

深度价值建模
在深度价值CVR建模方面,我们构建了面向淘外品牌广告的CVR价值模型。针对正负样本比例悬殊问题,模型目标上利用了Focal Loss和Weighted Cross-Entropy Loss;针对CVR延迟反馈问题进行了深入探索,一般情况加购下单等行为的决策周期较长,具有明显的延迟反馈特点,这就需要在样本实时性和标签置信度之间进行tradeoff。我们重点是对短周期观测结果的充分利用,通过概率分解的方式将短周期观测转化概率进行概率乘积转换,可观测的短周期转化概率可以表示为:
402 Payment Required
其中,表示全周期转化概率,表示全周期转化的基础上在观测周期可观测到转化结果的概率。在模型结构上,采用DNN网络分别拟合和,网络结构如下图所示。